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Decided by limits drawn
On charts of my past ways
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Abstract

In the first part of this thesis I discuss characterizations of neuronal func-
tionalities especially in response to sensory stimuli, followed by an overview
over the knowledge about the zebra finch’s auditory system as far as it is
known today.

The main part of the thesis is based on and partly reproduced1 from our
publication (Blättler and Hahnloser, 2011). I present a new nonsymmetric
sparse coding algorithm and its application to modeling the zebra finch’s
neuronal activity in response to auditory stimuli. In contrast to other,
symmetric sparse coding algorithms it is adapted to neuronal modeling
as biological neurons themselves are only able to relay unsigned messages
(action potential). However, models based on sparse coding schemes have
successfully been applied in the past to model low-level sensory systems,
mainly the primary visual cortex. But whether such models will be suc-
cessful in explaining the more complex behavior of neurons in higher sen-
sory brain areas is unknown. I show that applying our nonsymmetric
sparse coding algorithm on zebra finch vocalizations we are able not only
to model neuronal behavior in low-level brain areas such as Field L, but
also in high-level areas such as HVC (used as a proper name). In our model
one single parameter controls the transition between these behaviors: the
firing threshold of the neurons.

In the last part of the thesis four possible applications in machine learning
based on our nonsymmetric sparse coding algorithm and inspired by the
zebra finch’s auditory system will be presented: The first application is a
simple method to automatically identify sound files containing subsong.
As a second application a direct way to track development of song learning

1 sections 4.3, 5.2, 5.3, 6.3, and chapter 7
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during development will be shown. The third application will demonstrate
the possibility of smart noise suppression and as a fourth application an
approximation algorithm for underdetermined blind source separation will
be presented.

In a nutshell, I present a new algorithm that gives new insight into sensory
processing of the brain and could serve as a tool for machine learning
algorithms.



Zusammenfassung

Im ersten Teil dieser Dissertation diskutiere ich quantitative Beschreibun-
gen neuronaler Funktionen, im Speziellen als Antwort auf sensorische Sti-
muli, gefolgt von einer Übersicht des Wissen über das auditorische System
von Zebrafinken, wie es zum heutigen Tag bekannt ist.

Der Hauptteil dieser Dissertation basiert auf und ist teilweise übertragen2

von unserer Publikation (Blättler and Hahnloser, 2011). Ich präsentiere
einen neuen nichtsymmetrischen Sparse-Coding-Algorithmus und seine
Anwendung zur Modellierung neuronaler Aktivität im Zebrafinken als
Antwort auf auditorische Stimuli. Im Gegensatz zu anderen, symmetri-
schen Sparse-Coding-Algorithmen ist ein solcher für neuronale Model-
lierung geeignet, da biologische Neuronen gleichfalls nur vorzeichenlose
Botschaften übermitteln (Aktionspotential). Nichtsdestotrotz wurden Mo-
delle, welche auf Sparse-Coding-Algorithmen basieren, erfolgreich ange-
wendet, um primäre sensorische Systeme zu modellieren, allen voran den
primären visuellen Cortex. Ob solche Modelle auch fähig sind, das kom-
plexere Verhalten von Neuronen in höheren sensorischen Hirnarealen zu
erklären, ist unbekannt. Ich zeige, dass wenn wir unseren nichtsymmetri-
schen Sparse-Coding-Algorithmus auf die Vokalisierung von Zebrafinken
anwenden, wir das Verhalten von Neuronen nicht nur in tieferen Hirna-
realen wie Field L modellieren können, sondern auch in höheren Arealen
wie HVC (Eigenname). In unserem Modell wird der Übergang durch einen
einzigen Parameter kontrolliert: vom Schwellenwert, ab welchem die Neu-
ronen feuern.

Im letzten Teil der Dissertation werden vier mögliche Anwendungen des
nichtsymmetrischen Sparse-Coding-Algorithmus im Bereich des Machine-

2 Unterkapitel 4.3, 5.2, 5.3, 6.3, und Kapitel 7
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Learnings vorgestellt, welche inspiriert sind vom auditorischen System der
Zebrafinken: Die erste Anwendung ist eine einfache Methode, um automa-
tisch Sounddateien zu identifizieren, welche Subsong enthalten. Als zweite
Anwendung wird eine Möglichkeit gezeigt, um das Lernen des Gesangs
während der Entwicklung zu verfolgen. Die dritte Anwedung zeigt die
Möglichkeit, intelligent Lärm zu unterdrücken, und die vierte Anwendung
ist ein Approximations-Algorithmus für die unterbestimmte, blinde Quel-
lentrennung.

Zusammengefasst präsentiere ich einen neuen Algorithmus, welcher neue
Einsichten gibt in die Verarbeitung sensorischer Daten im Hirn und wel-
cher als Werkzeug für Machine-Learning-Algorithmen dienen kann.
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Chapter 1

Introduction

If the brain were so simple we could understand it, we
would be so simple we couldn’t.

Lyall Watson

Every moment of our life millions of rods and cones on our retina tell us
what the world around us looks like (Jonas et al., 1992), while thousands
of hair cells in our cochlea tell us how it sounds (lehlov et al., 1987). We
are probably not aware all the time of the olfactory receptor neurons and
taste buds. But we will be the next time we sit down and eat. And there
is more, somatosensory receptors send one million bit of information each
second to your central nervous system (Schmidt and Altner, 1978). But
regardless of these innumerable, atomically small particles of information
impinging on all our sensory systems we normally only perceive one cohe-
sive environment. All our senses have limited resolution in all dimensions,
be it time, space, frequency, or any other. But we never get the impression
of a grainy or jerky environment. And with a retina containing only three
different types of cones, each with its own absorption spectrum (centered
around red, green, and blue), we are able to distinguish roughly 10 million
different colors (Judd and Wyszecki, 1975).

Another astonishing feature of our perceptive system is its failure toler-
ance. Defects or damages of the sensory systems often remain unnoticed,
unless directly verified. Examples are the blind spot of the eye (Durgin,
1995) or the reduced range in aging humans.
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These three features, cohesion, continuity, and failure tolerance, all are
rendered possible by highly redundant sensory information, be it in time,
space, or any other dimension. If we would live in a world made of inde-
pendent noise, such features would be impossible. Or in simple terms, all
this robustness of perception boils down to the fact that our brain stores a
continuously updated model of our environment and projects all sensation
onto to this model (Fiser et al., 2010).1 Anyone can get an idea of this
internal model by examining stimuli that do not fit the model, everyone
has encountered such stimuli: visual and auditory illusions (Eagleman,
2001).

1.1. What Is the Goal of Sensory Coding

Knowledge about sensory coding of single neurons has been gathered for
several modalities and for different species (Cariani, 2001).

However, the knowledge about the operation performed by a single or few
subunits, even if all subunits are akin, does not explain the function of a
entire system. If we want to know more about a system - with access only
to subunit operation - we have to assume a possible goal of the system. If
we know the goal, we can search the space of functions for the ones leading
to this goal. And of these functions one now has to choose the ones that
fit the operation of the subunits.

On a first, swift glance one could say that sensory coding as a whole has
to subserve survival and reproduction. This approach is not as useless as
it might seem, it gives as some rough ideas.

In different species the nervous system has developed to completely dif-
ferent levels. Some animals like the jellyfish do not posses a brain, some
like the sponge completely lack a nervous system, whereas higher ver-
tebrates developed brains embodying up to dozens of billions of neurons
(Herculano-Houzel, 2010). What are the advantages for developing smaller
or bigger brains? The most dominant downside of a big brain is its high
demand of energy resources. The adult human brain consumes roughly

1 One could argue that this sentence is an endorsement of indirect perception and
therefore controversial. However, as I will not discuss conscious awareness of the
environment, the sentence is unaffected by this controversy.
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20% of the body’s total energy, in children even up to 50% (Kennedy
and Sokoloff, 1957), while most of the vertebrates’ brains demand only
a single-digit percentage (Mink et al., 1981). This high energetic cost is
therefore thought as the upper limit of brain size, as it reduces the available
energy for other indispensable organs such as the digestive tract (Aiello
and Wheeler, 1995). This limitation of energy consumption for the brain
is intrinsically implying a limitation of the sensory systems and sensory
coding.

Brains allow animals to learn from success and failure and adapt their be-
havior accordingly (van der Helden et al., 2010). Such abilities highly fa-
cilitate survival rates. In the case of females choosing their mating partner
they have to evaluate the fitness of possible partners in order to optimize
the survival rate of their offsprings, thus of their genes. And for animals
in which part of the courtship is learned, males have to be able to refine
their strategies to outperform rivals.2 And as a third exemplary benefit
some of the brained animals are able to plan future actions. Several mam-
mals and birds stash food (Smith and Reichman, 1984), apes are able to
prepare tools for future use (Mulcahy and Call, 2006), and humans try to
plan most of their lives in advance. Whether this planing is consciously
made by the animal or just an outcome of a genetically encoded program
has no bearing on our argument.

In all the discussed cases there are some decisions and/or actions per-
formed. These decisions and actions are based on current sensory input
(choosing of mate, notion of success or failure, memorizing stash) or on
memorized sensory inputs (stash retrieval, tool preparation). Therefore to
enable the animal to perform the optimal action the sensory systems have
to acquire and (pre-)process all relevant information about the environ-
ment3 for later stages of processing.

2 For a discussion about sensory systems, courtship, and their evolution, see Ryan
(1990) and Endler and Basolo (1998)

3 The term ‘environment’ includes the animal itself as the most important con-
stituent
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1.2. The Zebra Finch

The zebra finch (Taeniopygia guttata) belongs to the family of the spar-
rows (Passeridae), subfamily Estrildidae. Its natural habitat are the Lesser
Sundas (eastern Indonesia) and the Australian continent. The lesser Sun-
das zebra finch and the Australian zebra finch both form an own sub-
species, the Taeniopygia guttata guttata and the Taeniopygia guttata cas-
tanotis. Even though there is a dimorphism between the two subspecies,
most research results will not state which subspecies was subject, but be-
cause they are much more often kept as cage birds one can assume them
to be Australian zebra finches.4

On the Australian continent the zebra finch is omnipresent. In all four
climatic regions of Australia (tropical, subtropical, transitional zone, and
warm temperate (Heinrich Walter, 1975)) and in 16 of 18 faunal regions
(Blakers et al., 1984) zebra finches were found breeding. The only re-
gions avoided by zebra finches are forests. Their preferred fauna consist
of bushes and single trees to build nests on and vast areas of grass to feed
upon the seeds. Most of these regions are arid, but differ greatly in tem-
perature. While some regions have constant high temperature throughout
the year, others show seasonal changes. The zebra finch is a highly ro-
bust bird that will survive in high temperature but is also known to breed
down to 4 ◦C (Zann, 1996). Essential for survival is a sufficient supply
of grass seeds. Wild zebra finches drink roughly 1/3 of their body weight
per day, depending on temperature. However they would survive for a un-
determined amount of time in a conditioned laboratory environment even
when water deprived and fed with dry seeds (Cade et al., 1965; Lee and
Schmidt-Nielsen, 1971; Sossinka, 1972).

Zebra finch breed also in captivity. Even tough zebra finches are highly
monogamic birds they will reproduce with any new partner as soon as the
old partner disappears.

Since the mid-19th century the zebra finch is one of the most popular
cage birds in Europe, and because of their exalted breeding no new birds
needed to be imported since the beginning of the 20th century. People
love the zebra finch for his plumage and song.

4 If not mentioned otherwise this thesis discusses the Australian zebra finch
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The zebra finch’s song repertoire and breeding ability made the bird a
model animal in (neuro-)biology. It appeared in the focus of research 1959
when Immelmann published his doctoral thesis, the first scientific study
on the zebra finch (Immelmann, 1959).

1.2.1. The Vocalization of a Zebra Finch

Vocalizations of songbirds fall in two categories: calls and songs. Calls
are short, single tones without any gaps in between. Calls are dominantly
innate and produced by both sexes. Songs consist of any number of tones
and are sung only by male birds. The song of an adult bird is the result
of learning process.

The zebra finch produces a series of calls. The most prominent call is
the ’short call’ or ’tet’. These calls are gentle and of very short duration,
roughly 50 ms. Zebra finches emit them regularly while moving, in states
of excitement, or total isolation. But due to its softness ’short calls’ can
only be heard by nearby birds.

The ’long call or ’distance call’ is the loudest call of the zebra finch and
serves multiple purposes. It is used for greeting conspecific birds, especially
family members, but also new flock members. It is regularly exchanged
during flight, but also part of the mating ritual and emitted while feeding
hatchlings. When a bird loses visual contact to the other birds, it will try
to reach them by ’long calls’. The ’long call’ is produced by both male
and female birds. However, it is sexually dimorphic. The female ’long
call’ is completely innate and consist in a simple harmonic stack, while
the male ’long call’ is learned. Every adult male zebra finch has its own
individual call which he developed during adolescence. From lesion studies
it is known that in the male brain the innate ’long call’ is overridden by the
song production circuitry (Simpson and Vicario, 1990). When this circuit
is lesioned, male zebra finches will produce the same call as females. Cross-
fostering experiments with Bengalese finches showed that the male ’long
call’ is actually learned from its parents, as the zebra finches produced
calls similar to their foster-father’s (Zann, 1985).

The third regular call is the ’medium call’. It is shorter and fainter than
the ’long call’, but longer and louder than the ’short call’. Wild zebra
finches use it mainly to indicate a take-off or a landing. When held in
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isolation, ’medium calls’ will be the most common call of the zebra finch,
more often than ’long calls’ or ’short calls’. There are roughly nine more
calls emitted by the zebra finch, but only on specific occasions, such as
begging for food, copulation, pain or warning (Zann, 1996).

The vocalization that distinguishes songbirds are their songs. In the whole
animal kingdom only very few species are able the learn a vocalization
apart from humans. Several birds posses this ability (parrots, songbirds,
and hummingbirds) as well as few mammals (marine mammals, probably
also bats and elephants) (Janik and Slater, 1997; Poole et al., 2005). In
the order of primates we are most probably the only species displaying
vocal learning.

A song is classified on 3 levels: The bottom level is formed by tones,
syllables, or elements (the nomenclature is not standardized). Syllables
are similar to calls. For the zebra finch their duration is in the order
of 100 ms. Normally a syllable is defined by a minimum duration of
silence in the beginning and end. However, single syllables might consist
of 2 or 4 completely different sounds, sometimes called sub-syllables or
tones. A categorization of the sub-syllables is given by Zann (1993). On
the intermediate level is the phrase or the motive (sometimes also called
song). A motive is a more or less fixed sequences of syllables and intervals,
depending on the species. A zebra finch will only produce one single motive
(with some errors)5. Typically a zebra finch motive will consist of 3 to 8
syllables, which do not have to be unique and can be repeated within
the motive. On the top level finally we have the song or (song-)bout.
The zebra finch song starts off with a variable number of introductory
notes which are similar to the short call. The introductory notes are then
followed by the motive that can be repeated a few times. Birds with
more than just one motive might mix up the different motives. However,
there is no evidence that the semantic information exceeds ’mate me’, and
conveying some information about the sexual fitness (Berwick et al., 2011).
Or how Ian Anderson wrote in the introduction to ’The Secret Language
Of Birds, Pt. II’: “Semantic set-aside. You with me?”(Anderson, 2000)

However, an interesting feature is the variability of the song. Zebra finches

5 in contrast to other songbird species that may have several motives in their
repertoire (Devoogd et al., 1993a). This simplicity makes the zebra finch an
optimal model animal



1.2 The Zebra Finch 11

0

50

d
B

0

8

k
H

z

i i A B C1 D C2 E F A B C1 D C2 E F

Motive Motive

200 ms

Fig. 1.1: Example of Zebra Finch Song. The song consists of two introductory
notes i followed by two identical motives. The motives are rather rich for a zebra
finch song and consist in 7 syllables. Syllable A actually is an identical copy of
the introductory notes but it is a real syllable as it is repeated in each motive.
Syllables C1 and C2 are very similar and in most cases would be classified as
the same, however, there are tiny differences that are consistent over different
motives. Syllable D is a very complex note consisting in 4 sub-syllables: noise-
stack-stack-downsweep. Syllable E again is a fragment of syllable D, consisting
in the first two sub-syllables of the latter. Syllables such as F are very often
found in zebra finches: constant harmonic stacks that end with a downsweep.

will produce two different types of song depending on the situation: di-
rected song and undirected song. The defining feature of the directed song
is its very low variability in both spectral and temporal structure, has more
introductory notes and more repetitions of the motif, and is sung faster
(Sossinka and Böhner, 1980; Zann, 1996). It is mainly used when courting
a female (Sossinka and Böhner, 1980; Zann, 1996). The undirected song in
contrast shows a certain degree of variability and is mainly sung towards
no particular bird (Immelmann, 1962). Fathers will sing undirected songs
more often when having offsprings in the sensory phase (Ten Cate, 1982)
and during nest building and breeding (Zann, 1996). There is some evi-
dence that undirected song could play a role in song maintenance in the
adult bird (Jarvis et al., 1998).

1.2.1.1. Acquisition of Song

In their early life male zebra finches will learn their song. The template of
their song will be provided by the tutor. In captive breeding the chosen
tutor is normally the rearing father or foster-father of the young bird
(Böhner, 1990). So when raised by heterospecific birds they will try to
imitate their supposed father (Immelmann, 1965). However, in studies
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with more natural settings or field studies the choice of tutor seems more
complex. Most studies still show a preference for the father as tutor, with
about every second bird copying his father (Mann and Slater, 1995; Zann,
1990).

When raised together with a (foster-)father young zebra finches are able to
memorize a tutor song during the so-called sensory phase lasting more or
less till day 35 (Arnold, 1975). However, this first template of a tutor song
is not final. If the tutor is exchanged during their sensory-motor phase
before their song finally crystallizes around day 90 to 120, when they reach
sexual maturity, the birds may completely change the tutor song or mix
up the two songs and come up with a hybrid song (Eales, 1985).

The development of the song is most often divided into three phases:
subsong, plastic song, and crystallized song. The subsong is best compared
to the babbling of children (Goldberg and Fee, 2011). It is a phase of
vocal exploration around day 35 to day 45 with no identifiable repeated
pattern neither temporally nor harmonically (Goldberg and Fee, 2011;
Veit et al., 2011). The plastic song in contrast starts to express repeated
syllables which are gradually or abruptly assimilated from the tutor song
(Tchernichovski et al., 2001). Around day 120 the song does not further
evolve and will stay unchanged in the birds further life unless they are
seriously perturbed (Leonardo and Konishi, 1999). Between this three
song types no fixed boundaries have been reported, they are stages of a
fluid song-development.

A big question is song acquisition in the absence of a tutor. The male
zebra finch will start singing subsong normally, but as they do not have a
template they will start to repeat calls and random sounds as their song
which sounds unlike natural zebra finch songs(Williams et al., 1993). An
interesting study has been performed by Feher et al. (2009): They formed
a whole colony with only untutored males and females. Even tough their
offsprings copied the stunted songs, slight changes where introduced, so
that after 3 to 4 generations the songs evolved towards wild-type songs.
“These birds behave as though they possess extensive innate knowledge
about their species song” (Marler, 1997)6.

If a bird is given a late tutoring there are some evidences that the critical
phase of song learning can be prolonged (Slater et al., 1992).

6 We will discuss this statement later in chapter 6.2.
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Figure 1.2: Example of song devel-
opment. On top and bottom row an
examples of the tutor song is shown.
This bird was not exposed to male con-
specifics until day 39 and was then given
access to tutor song. Each time the bird
pressed a button, he would be exposed
to a zebra finch song (Tutor), until the
daily maximum was reached. On day
44 one can see the bird producing classi-
cal subsong, where no clear spectral pat-
tern can be seen and temporal patterns
are not repeated. With day 48 the bird
starts to sing plastic song and already
by day 49 the second last syllable of the
tutor song has been copied, but will still
be further refined on later days. From
day 53 on, the bird tries to copy the last
syllable of the tutor song which he grad-
ually prolongs element by element till
day 57. In parallel on day 55 suddenly a
new syllable appears in the center of the
song which tries to mimic the noisy cen-
ter syllable of the tutor song. However
he will not succeed. So from day 57 on
all syllables of the tutor song are copied
and further refined to match the tutor
song. The spectral range of the spectro-
grams spans from 0 to 8 kHz. The data
was provided by Joshua Herbst.
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Chapter 2

Characterization of a Neuronal
Sensory System

Est modus in rebus. - There is measure in all things.

Horace, Sermones

If th raw data about the neural system we want to investigate is limited,
and even if we were able to describe the system in every detail of its
operations, we will not gain any insight to its functionality. We will have
but a mere neural painting of colors and shapes, but with no identified
content. We have to search for patterns and regularities and quantify
them. Only with these characteristic numbers, we can put it on a level
with different (sub-)systems, search for underlying principles, and compare
models of the systems to the limited data available.

In this chapter I will explain the measures most often used to describe
neural activity in sensory systems and I will discuss the strength and
limitations of each measure.

2.1. Response Strength, z-Score and Selectivity

The measures in this section are probably the most simple and direct ways
to describe the main response properties of neurons. The response strength
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RSA = r̄A/r̄BG of a neuron to a stimulus A describes the ratio of mean
firing rate r̄A during stimulus presentation compared to the so called mean
baseline firing rate r̄BG of the neuron when no stimulus is presented. So a
RSA < 1 represents a neuron that is inhibited by stimulus A on average,
while a RSA > 1 represents a neuron excited by the stimulus.

The response strength tells you the sign of the change in firing rate in
response to the stimulus. However, it says nothing about the reliability
of the change and, given a neuron with a very low baseline firing rate
r̄BG, the response strength can achieve absurdly high values. Therefor,
the z-score is introduced, sometimes also called the normalized response
strength. The idea is to normalize the difference in firing rate by standard
deviation of the mean firing rates during different stimulus presentations
and baseline,

zA =
r̄A − r̄BG√

σ2
A + σ2

BG − 2 · covar (rA, rBG)
, (2.1)

where covar (., .) denotes the covariance of the mean firing rates. Com-
pared to the RS, the z-score tells us not only, whether a neuron boosts its
firing rate in response to a stimulus or whether it is suppressed. It also
tells us, how reliable the change is. A z-score of somewhere between -1
and 1 tells us that from the response of this neuron, we will most of the
time not be able to tell whether or not the stimulus was presented. But
when we are faced with a z-score of e.g. 10, there will never be an uncer-
tainty about whether or not the stimulus is presented just by looking at
the response of the neuron. The firing rates of baseline firing and during
stimulus presentation are nonoverlappingly distributed.

The third measure from this group is the selectivity. It is very closely
related to the z-score, but does not compare stimulus evoked response to
baseline, but the responses to two different stimuli A and B:

d′ =
2 (r̄A − r̄B)√
σ2
A + σ2

B

. (2.2)

This measure was first proposed by Green and Swets (1966) and has since
then found its way into neuroscience. The two differences to the z-score
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are the factor 2 and the missing covariance term. The factor 2 should
compensate for the division by the square root of two variances and is only
a matter of taste in my eyes. A bigger issue is the missing covariance which
should reflect the variance that does not originate in noise or stimulus, but
in global changes of the system e.g. the state of mind, the wakefulness of
the subject, or simply a deterioration of your electrode. It therefore should
have been included in the selectivity measure, but history has chosen not
to. However, it is difficult to estimate and thus often ignored, also when
calculating the z-score.

The name ”selectivity” also is misleading as a high value does not mean
that a neuron is selective towards a stimulus. Nor does a zero value indi-
cate a nonselective neuron. The value does not even reflect the preference
of stimuli, as a positive value could mean a suppression of firing in re-
sponse to the second stimulus, while the first stimulus will not drive firing
away from baseline. Therefore sometimes the more appropriate term ”dis-
criminability” is used, as this measure describes how well two stimuli can
be told apart by looking at the mean response of this single neuron.

The main drawback of these three measures are their stationarity assump-
tion. They all just work on mean responses which may be a good assump-
tion using static stimuli such as pictures. However, as we will discussion
in the next section, sound is seldom stationary and neural responses are
not simply up- or down-regulated by stimuli, but show a high degree of
inner variability. Nevertheless, this measures proved to be useful as a first
description of neural behavior and help us to get a first insight into the
songbird’s brain.

2.2. Receptive Fields

2.2.1. Time-Frequency Representation of Sound

Sound itself is a mechanical pressure wave in a medium such as air. This
one-dimensional signal is taken up by the auditory system (see chapter 3).
However, cortical (and most subcortical) auditory neurons will not respond
to the rapid changes in air pressure (hearing range goes as high as 120 kHz
in bats, Neuweiler (1984)). Much more will they respond to temporal and
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spectral features within the sounds. Already in the first step of auditory
processing the sound signal will be decomposed into different frequency
bands (3.1.3). In the following I will present a few computational methods
to decompose a sound signal into its temporal and spectral components.

2.2.1.1. Log-Power Spectrogram

One of the most often used methods of time-frequency representations is
the log-power spectrogram, often just called spectrogram. The big ad-
vantage of spectrograms is their mathematical comprehensibility and easy
computability. By Fourier transform (FT) short excerpts of the waveform
(Figure 2.1A) are converted into frequency domain (short-time Fourier
transform, STFT). FT is energy-conservative, so the square amplitude of
a single Fourier component represents exactly the amount of energy in the
corresponding frequency band. Phase information is discarded1 and only
the square amplitude (power) is preserved. However, it turns out that this
representation is more useful in the log-domain (in decibel).

If an event happens within such an excerpt of length δt we will be able to
locate it temporally with a precision of δt and spectrally with a precision
of δf = 1

δt . By overlapping the excerpts, the signal will temporally be
smeared, as the temporal distance between two excerpts is smaller than
the temporal resolution of the signal. But a further problem arises from
the fact, that the amplitudes of Fourier-series are invariant under circular
permutation, i.e. the STFT of the excerpt is equivalent to an normal
FT of a signal that consists in an infinite repetition of the excerpt. But
the excerpts in general will not end at the same phase as they started,
leading to a discontinuity in the waveform (Figure 2.1B). The FT of a
jump however will lead to energies in the high frequency domain, even
tough the underlying signal might be a constant low-frequency sine-wave
(Figure 2.1E). In order to suppress this erroneous high frequency portion
the excerpts get multiplied by a windowing function w, such as Hamming
windows or Gaussian windows (Figure 2.1F), that flattens the boarders
of the excerpts (Figures 2.1G and H). However, this windowing functions
do not only suppress the high frequency portions in the FT, they in fact

1 the original signal is recoverable from the amplitude of STFTs with temporal
overlap of more than 50% (Griffin and Lim, 1984).
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Fig. 2.1: Calculation of a spectrogram. (A) Excerpt of the pressure wave of
a piano. (B) Same excerpt, but phase-shifted. In the red ellipse the waveform
has a discontinuity. (C) Scale of the waveforms. The amplitude is in arbitrary
units. (D) Scale of the spectrograms. (E) Spectrogram outtake of the piano
piece without windowing. Due to the discontinuity depicted in B, the energy
is distributed over all frequency bands and higher harmonics tend to dissolve.
The logarithm of the energy is color-coded over a range 100 dB. (F) Excerpt of
the waveform plus a Hamming window of the same size (in red). (G) Windowed
excerpt. The windowed excerpt is created by pointwise multiplication of the
excerpt with the window. (H) Phase-shifted version of the windowed excerpt.
The discontinuity in the red ellipse is highly reduced, leading to less energy in
the high frequency band due to it. (I) Spectrogram outtake of the piano piece
with windowing. High frequencies which are not due to the piano piece itself
are highly suppressed and the harmonics are clearly visible, in comparison to E.
The logarithm of the energy is color-coded over a range 100 dB.
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also change the resolution of the spectrogram: frequency resolution gets
worse, and the signal gets smeared over adjacent frequency bands (spectral
leakage)2 and the temporal resolution gets slightly better, sharpening the
spectrogram temporally.

2.2.1.2. Log-Spaced Spectrogram

When dealing with sounds, a linear frequency scale is often not preferable
as perception of sounds does not depend on absolute values, but on their
relative frequency3. Therefore a logarithmic frequency scaling seems more
natural. One could imagine different ways to calculate such a spectro-
gram, but I want to stay as close as possible to the original idea of the
spectrogram. The discrete FT can also be seen as matrix multiplication
of a matrix containing complex sine waves of frequencies zero to the sam-
pling frequency whereby the second half of the waves (above the Nyquist
frequency) matches exactly the complex conjugate of the first, except for
the zero frequency. If the excerpt is windowed, the windowing function
can also be drawn into the matrix by windowing each complex sine wave
instead of windowing the excerpt. To get a logarithmical frequency scale
the complex sine waves need no longer to be linearly scaled but logarith-
mically. So the frequency of the first component should be f0 = fmin
and the following frequencies fn = fmin · 2(n/s) where s is the number
of frequency bands per octave. Due to the different spectral spacing of
the spectrogram we are also able to adapt the temporal resolution of it.
Equivalent to the normal spectrogram where the temporal resolution is
δt = 1

δf we can define δtn = 1
δfn

= 2
fn+1−fn−1 = 2

fn·(21/s−2−1/s)
. What we see

is a temporal resolution that is inverse proportional to the frequency, so we
can achieve higher temporal resolution in the high frequency domain and
at the same time retain the high spectral resolution in the low frequency
domain. However, again the real spectral resolution is somewhat worse
due to the windowing.

2 The multiplication of the excerpt with the windowing function is equivalent to
a convolution in the Fourier-domain. Therefore the only windowing functions w
that do not smear need to satisfy F (w) (n ·∆f) = 0 for all n ∈ Z\ {0}. The
above equation is only satisfied for rectangular windows.

3 Only very few people have access to absolute pitch, Levitin and Rogers (2005).
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2.2.1.3. Chirplet Transformation

A further shortcoming of the STFT is the implicit assumption that sounds
will have constant pitch over the duration the window. This assumption
might be valid for pianos as in the example of Figure 2.1. However, many
natural sounds tend to gradually shift their pitch. Such a shift leads
to a further spectral broadening of the representation as well as to the
emergence of sidebands. An interesting approximation to this problem
was proposed by Mann and Haykin (1991). The general idea is to take
shifts into account. Good candidates for a first approximation are linear
shifts and exponential shifts. Similar as in Section 2.2.1.2 FT is replaced by
multiplication with a matrix F containing complex sine waves. However,

the frequency f (τ) = ∂φ(τ)
∂τ within each wave w (τ) = ei·2π·φ(τ) is either

going linearly from fc ·(1−∆) to fc ·(1+∆) or exponentially from fc ·e∆ to
fc ·e−∆, where fc is the center frequency4. So for a set of center frequencies
(either linearly or logarithmically spaced) a transformation matrix W (∆)
is calculated.

The most difficult point is the choice of the correct chirp ∆. A simple
way is to create a set of transformation matrices for a different ∆ each
and apply them on excerpts s of the sound. The correct chirp ∆ for an
excerpt will then be the one that minimizes the spectral broadening and
the sidebands. A possible solution is the ∆ that produces the smallest

normalized 1-norm in amplitude space: ∆ = argmin ∆̃

‖abs(W(∆̃)·s)‖
1

‖W(∆̃)·s‖
2

.

Similar algorithms have been proposed, using chirplet-atoms in matching
pursuit (Bultan, 1999). The idea is to have an overcomplete set of chirplet-
atoms with different spectral and temporal resolutions and different chirps
(similar to the transformation matrices W (∆) in the algorithm presented
above). The original signal then is approximated as good as possible using
a minimal amount of chirplet-atoms.

4 one can imagine an infinite number of different chirplets (Mann and Haykin,
1995), however, for sound applications those two seem the most promising.
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2.2.2. Receptive Field Estimation

In order to understand the functionality of sensory systems we have to
describe how stimuli are encoded by neurons. In auditory systems this
is often done by calculating the spectral-temporal receptive field (STRF)
which is a linear approximation of the relations between stimulus and
output of auditory neurons and has first been described by Aertsen and
Johannesma (1981). However, the concept of receptive fields (RF) in visual
system was established long before by Hartline (1938). He defines the
receptive field as follows:

No description of the optic responses in single fibers would be
complete without a description of the region of the retina which
must be illuminated in order to obtain a response in any given
fiber. This region will be termed the receptive field of the fiber.

This definition however is insufficient as neurons do not only experience
excitatory stimuli, but very often also depressing stimuli which could go
unnoticed, if not paired with an exciting stimulus, and which are not de-
scribed separately. Hubel and Wiesel (1959) therefore divided RFs into
“excitatory and inhibitory (’on’ and ’off’) areas”. This definition was fur-
ther refined. Areas of the RF not only have a sign but also an amplitude
and work as a linear filter on the stimulus.

Calculation of RF is normally done by reverse correlation. We define
the RF as the linear filter h whose prediction r̃t = hT ∗ Xt minimizes

the summed squared prediction error F =
∑

t

(
rt − r̃t

)2
of the neurons

response rt over a set of stimuli Xt. The stimuli Xt and the response rt

are mean-subtracted.

To optimize it, we can set the derivation of F to zero and get:

∂F

∂h
=
∑
t

−2Xtrt + 2XtXtTh = 0 (2.3)

h =

(∑
t

XtXtT

)−1

·
∑
t

Xtrt = C−1
SSCSR. (2.4)
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CSS simply describes the stimulus covariance, while CSR is the cross-
covariance between stimulus and response and is closely related to the
spike triggered average. To estimate the RF, white noise stimuli are often
chosen, as the covariance degenerates to a simple scalar factor and the
RF is identical to the cross-covariance. It is a good choice for neurons
with very linear response properties, but for cortical neurons white noise
often leads to a poor response, making an estimation of the RF impossi-
ble (Theunissen et al., 2000; Cohen et al., 2007). White noise therefore
is replaced by natural stimuli that drive the neurons well. The RF is no
longer the cross-covariance itself, but it is normalized by the stimulus co-
variance. The problem that arises is that natural stimuli often occupy only
a low dimensional subspace of all possible stimuli. This low dimension-
ality manifests itself by a covariance matrix which is not of full rank, or
differently said, the covariance matrix has eigenvalues which are virtually
zero. Calculating the inverse, dimensions with eigenvalues close to zero
will be blown up monstrously, even though such dimensions most likely
just represent noise. Predictions on new stimuli are destined to fail badly,
as noise will be the main driving force given such model. It is a classical
example of overfitting.

To avoid overfitting several methods have been proposed. Theunissen
et al. (2001) used only eigenvectors of the stimulus covariance that are
associated with an eigenvalue not smaller than a certain fraction of the
biggest eigenvalue for the matrix inversion. To enhance this method the
cross-covariance was low-pass filtered by checking the frequencies for sig-
nificance using a jackknife (Theunissen et al., 2000). Alternatively a jack-
knife was applied on the raw RF directly to test for significant regions,
without previous manipulations (Sen et al., 2001).

A more direct way would be a Tichonov-regularization of the RF by
weighting it with a matrix Γ and adding it to the cost function F :

F =
∑
t

(
rt − r̃t

)2
+ ‖Γh‖22. (2.5)

The open question is the choice of Γ. Often it is chosen as a constant
factor Γ = µ · I. However, in my experience one achieves better results
by scaling the factors according to the root of the stimulus variance Γ =
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µ
√

diag (CSS), where diag (.) is a diagonal matrix with the same elements
on the diagonal as the argument. The RF can still be directly calculated
by

h =
(
CSS + ΓΓT

)−1
CSR = (CSS + µ · diag (CSS))−1CSR (2.6)

The optimum factor µ can be estimated by calculating the predictive power
of RFs on validation data with different µ. This method is equivalent to
assuming to have uncorrelated noise on the signal with a local signal to
noise ratio of 1/µ. By experience, the optimum µ lays between 0.1 and 1,
depending on the amount and quality of the data.

One of the most elegant methods in my eyes of RF estimation is maxi-
mally informative dimensions (MID) by Sharpee and Bialek (2007). While
the input-output relationship of neurons described by RFs is purely linear,
sometimes an additional nonlinearity is introduced (Calabrese et al., 2011).
However, this methods have to make assumptions about the nonlinearity.
MID on the other hand searches the stimulus-space for the stimulus di-
mensions (or produces a simple RF in the case of one stimulus dimension)
that show the highest mutual information with the neurons output. If the
output is defined by just one RF, this method will find it regardless of any
nonlinearity. Drawbacks of this method are its need for data to reasonably
estimate the density of the stimulus space and its high computational cost.

2.2.3. Spectral-Temporal Receptive Fields

In the visual domain most often static stimuli are used to determine the
RF of neurons, such that the response rt is only depending on stimulus
Xt. However, RF estimation from static stimuli (tones) often predict the
behavior of neurons inferiorly to RF estimation from (naturally) modu-
lated stimuli (Theunissen et al., 2000; Machens et al., 2004). But also in
the visual domain natural, non static stimuli yield better RF estimations
(David et al., 2004).

To catch the dynamic features to which the neurons respond, I will not only
look at the actual stimulus but at the stimulus history of length τ preceding
the response. The response rt is now depending on the stimulus Xt−τ :t
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which we write as a single vector and we have CSS =
∑

tX
t−τ :tXt−τ :tT

and CSR =
∑

tX
t−τ :trt.

An important question remaining is the representation of the stimulus. A
short discussion about representation of sound in the spectral-temporal
domain has been given at the beginning of this section 2.2.1. In my ex-
perience, estimations based on the simple log-power spectrogram yield
results qualitatively similar to estimations based on more elaborate repre-
sentations and are therefor my preferred representations. A comparison of
power spectrogram, log-power spectrogram and the Lyon’s model (Lyon,
1982) used for estimation of the STRF and their predictive power applied
on zebra finches is given by Gill et al. (2006).

2.2.4. Ensemble Modulation Transfer Function

An interesting feature was introduced into songbird research by Singh and
Theunissen (2003). The idea is to summarize the spectral-temporal fea-
tures the neurons are coding for. In simple words, STRFs are calculated
for auditory neurons and on these STRFs a two-dimensional FT is per-
formed (dropping the phase). We now have a two dimensional map called
Modulation Transfer Function (MTF) which tells us how many cycles per
kHz and how many cycles per s (or Hz) the stimulus must have (without
the phase) to optimally drive the neuron. For a single STRF this measure
might not be of great value, but if we sum over the whole population, we
get the ensemble MTF (eMTF). The eMTF can then directly be compared
to the FT of different stimuli and we can determine which elements of the
stimulus get overrepresented in the neuronal code and which elements are
suppressed. However, only few studies (Theunissen et al., 2004; Woolley
et al., 2005, 2009; Amin et al., 2010) estimated eMTFs in songbirds by
now, as a lot of data is needed to estimate the RF for each neuron and a
large number of neurons to make statements about the ensemble.
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Chapter 3

The Auditory System of Songbirds

Everything you see or hear or experience in any way at all
is specific to you. You create a universe by perceiving it, so
everything in the universe you perceive is specific to you.

Douglas Adams, Mostly Harmless

In this chapter I shall to some extent try to unravel the auditory system of
songbirds in general and of the zebra finch in particular. We can not draw
any conclusions, because - despite the overwhelming amount of published
material - the knowledge about the system consists in relatively few and
tiny fragments. It is like trying to see the dolphins in a 10’000-pieces jigsaw
puzzle of the maritime wildlife with only a dozen pieces at hand. But by
analyzing these pieces carefully, one may detect the maritime environment.

One problem which we will not discuss any further is the definition of
auditory. Do you call an area auditory if it changes its state solely (but

Fig. 3.1 (facing page): Schematic drawing of the auditory nuclei of one
hemisphere and their connections. The colors of the areas correspond to the
following structures: yellow - peripheral nervous system, green - hindbrain, blue
- midbrain, purple - thalamus, red - primary auditory cortical nuclei, orange -
secondary auditory cortical nuclei, brown - tertiary auditory cortical nuclei, dark
green - shelf and cup, grey - anterior forebrain pathway, white - other (auditory)
areas. Only known and verified connections are drawn. The solid lines denote
ipsilateral connections and the dotted lines contralateral connections to or from
the faintly painted contralateral nuclei.
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always) in response to auditory stimuli and is independent of other influ-
ences? Probably no brain area would satisfy this definition. Or would you
call any area auditory that changes its state in response to auditory stim-
uli, regardless of other influences? Then nearly any area could be called
auditory. A useful definition lies somewhere in between these extreme ex-
amples. However, in this thesis I do not want to assess the definition, but
rather stick to generally accepted terms.1

The data presented in these sections is not from the zebra finch only.
Especially the first section 3.1 deals with other avian species: barn owl,
chicken, sparrow, or canary. But from the evolutionary point of view, ear
and hindbrain are old parts of the auditory system which did not change
much, even when compared to reptiles. It is therefore safe to assume that
there exists a certain homology among birds, except for size and quantities.

Naming of the different nuclei in the avian brain has been very inconsistent,
but since the 2002 Nomenclature Forum there has been a standardization
of the nomenclature (Reiner et al., 2004a,b,c; Jarvis et al., 2005).

3.1. From the Mechanosensory System to the Tha-

lamus

3.1.1. Middle Ear

The middle ear of a bird has a very similar function to the mammalian one.
In both animal classes the inner ear mechanically transfers sound arriving
at the tympanic membrane to the oval window. In order to facilitate the
transfer of sound from air to the fluid of the inner ear (a huge transition
regarding the acoustic impedance, i.e. with no direct sound transfer from
one medium to the other) a leverage system is used. But as the bird pos-
sesses evolution’s oldest ossicle, the columella - homologous of our stapes -
the lever is generated by the flexible extracolumella. This system of lever-
age creates the disadvantage of being a low-pass filter. Frequencies above

1 To quote Whitfield (1967): “the ’auditory cortex’ is hard to define, either
anatomically or functionally. While certain areas are so predominantly connected
with the rest of the auditory system as to be unequivocally auditory areas, sur-
rounding regions become less and less certainly so, as we move from the primary
projection area.”
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4 kHz are cumulatively damped and the theoretic limit of transmission
lies at 12 kHz. For highly specialized birds such as the barn owl evolution
pushed the hearing ability up to this limit (Manley, 1981).2

3.1.2. Cochlear Duct

The auditory organ of the inner ear in birds is often called cochlea as
for mammals. This naming might be misleading as the word ‘cochlea’
is derived from the Greek word kokhlias (snail). But the cochlear duct
of birds is not coiled. Its shape resembles a straight, twisted cylinder
(Schwartzkopff and Winter, 1960). The inner structure of the cochlear
duct is similar to the mammalian one, consisting of the liquid-filled scala
tympani and scala vestibuli, which are separated by the basilar membrane
and by the tegmentum vascolosum from the scala media. The basilar
papilla is connected to the basilar membrane and consists of roughly 5’800
hair cells in starlings (Gleich and Manley, 1988), less than for most mam-
mals. Most of these hair cells belong to two populations: the tall hair cells
located mainly on the neural side of the basilar papilla and the short hair
cells mainly on the abneural side. A striking difference between these two
populations (except for their morphology) is the complete lack of afferent
innervation of the short hair cells, though they receive efferent input (Fis-
cher, 1994). There is evidence that the function of the short hair cells is
to change the mechanics of the system in order to amplify low-intensity
sounds and dampen high-intensity sounds (Yates et al., 2000). Such a
nonlinear amplification is a well-studied phenomenon in the mammalian
cochlea (Brownell et al., 1985).3

3.1.3. Cochlear Nerve

In consistency with the shorter cochlear duct and the smaller number of
hair cells, the number of auditory nerve fibers in birds is smaller than
in mammals. The highly specialized barn owl which has roughly 31’000

2 See Manley and Gleich (1992) for a more detailed description of the avian middle
ear.

3 For a good overview of the avian cochlear duct, see Köppl et al. (2000a) and
Manley and Gleich (1992).
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afferent auditory nerve fibers (Köppl, 1997a) is once again an exception.
In songbirds this number is significantly smaller: reported numbers of
auditory nerve fibers are between 6’000 in the canary (Gleich et al., 1998)
and 9’000 in the starling (Köppl et al., 2000b).

Neural activity of hair cells is rarely measured at the hair cells themselves,
but at the cochlear nerve. As with most vertebrates, each auditory nerve
fiber shows one distinct sound frequency to which it responds at lowest
sound pressure level, the so called characteristic frequency (CF). Mea-
surements of the CF and the minimal sound pressure level that elicits a
response in the fibers reveal two organizing principles of the basilar papilla:
a tonotopic organization and an audibility organization. The connections
made by auditory nerve fibers at the apical end of the papilla show the
lowest characteristic frequencies, while the ones connecting to the basal
end the highest. On the other dimension, fibers connecting to the neural
end respond to low sound pressure levels, while the ones connecting to
the abneural end respond only at very high sound pressure levels (Manley
et al., 1985).

When stimulated with a single tone at the CF, auditory nerve fibers will
respond with spikes that are phase-locked up to roughly 1 kHz. Interest-
ingly, when measuring spontaneous activity in these fibers, half of them
show regular interspike intervals which are roughly 15% longer than a
period of the CF (Manley et al., 1985). This seems consistent with the
fact that the electrical properties of the fibers modeled as a RLC-circuit
(proper name) have a resonance frequency which is roughly 20% lower
than their CF.

3.1.4. Hindbrain Nuclei

The recipients of the auditory nerve are the ipsilateral nucleus magnocel-
lularis (NM) and nucleus angularis (NA) (Correia et al., 1982). In case of
the redwing blackbird neurons in NM show quite a high spontaneous firing
rate between 16 and 237 spikes per second with a mean of 116 (Sachs and
Sinnott, 1978). The organization of the neurons is tonotopic, but inter-
estingly only a few neurons have CFs above 5 kHz (Sachs and Sinnott,
1978; Konishi, 1970). For the barn owl these neurons show responses that
are phase-locked to a stimulus at the CF up to nearly 10 kHz (Köppl,
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1997b). This phase-locking is important as NM projects tonotopically to
both ipsilateral and contralateral nucleus laminaris (NL) as its only ef-
ferent projection (Krützfeldt et al., 2010a; Parks and Rubel, 1975; Young
and Rubel, 1983; Takahashi and Konishi, 1988). NL is thought to be the
nucleus that calculates the interaural time difference (ITD) and thereby
locates the sound sources (Carr et al., 1989; Hyson, 2005). Neurons in NA
show a very rigid tonotopic organization. Lowest CF have been measured
between 135 Hz and 655 Hz (depending on the species) and highest CF
were between 6.2 kHz and 9.4 kHz (Konishi, 1970). These values are con-
sidered to define the limit of hearing in the bird, as the other recipient
of the auditory nerve, NM, can only represent a more limited bandwitdh.
An interesting feature of a subpopulation of NA neurons is the presence
of not only a CF, but also of a characteristic loudness. These neurons
are inhibited when the loudness exceeds a certain threshold (Sachs and
Sinnott, 1978).

NL and NA both provide the main input to the superior olive (SO) and
the lateral lemniscal nuclei (LL) on both, the ispi- and contralateral side
(Krützfeldt et al., 2010a,b; Wild et al., 2010; Correia et al., 1982; Takahashi
and Konishi, 1988; Yang et al., 1999). SO and LL themselves project back
to all other four ipsilateral hindbrain nuclei in the bird (Wild et al., 2010;
Yang et al., 1999). Further they are both projecting to their respective
contralateral counterpart (Wild et al., 2010). Additionally LL receives
input from the RA Cup (Martin Wild et al., 1993; Mello et al., 1998).
The exact functionality of SO and LL is mostly unknown. However, part
of LL is known for interaural level difference (ILD) estimation in case
of the barn owl (Takahashi and Keller, 1992). For small birds the ITD
becomes too small for reliable source localization and ILD becomes more
important. Additionally, ITD and ILD are not identical. Therefore not
only the azimuth but also the elevation can be estimated (Moiseff, 1989).

LL form two interesting connections, bypassing the midbrain: firstly, they
bilaterally connect directly to the auditory thalamus, the nucleus ovoidalis
(Ov), and secondly, they provide auditory input to the thalamic nucleus
uvaeformis (Uva) bilaterally (Wild et al., 2010), which is gating auditory
input to the premotor nucleus HVC (Coleman et al., 2007).

A very thorough study of auditory hindbrain connectivity in the zebra
finch was published by the group of Prof. JM Wild (Krützfeldt et al.,
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2010a,b; Wild et al., 2010).

3.1.5. Midbrain - MLd

The auditory nucleus of the avian midbrain is the mesencephalicus later-
alis dorsalis (MLd). MLd receives auditory input from both, ipsilateral
hindbrain nuclei and contralateral hindbrain nuclei SO, LL, NL, and NA
(Krützfeldt et al., 2010a,b; Wild et al., 2010; Correia et al., 1982; Takahashi
and Konishi, 1988). Except for a few bypasses, all auditory information to
the cortex passes through MLd. It also forms a feedback connection with
the RA Cup (Martin Wild et al., 1993; Mello et al., 1998). In addition, it
is connected to its contralateral counterpart (Karten, 1967; Akesson et al.,
1987). One should keep in mind that all nuclei further upstream do no
longer have contralateral connections.

Woolley and Casseday (2004) examined the auditory behavior of neurons
in the MLd of zebra finches. A striking difference to the hindbrain neurons
is the nearly complete absence of spontaneous firing. The encoding of
auditory information in MLd is unsigned, only in a positive change of
firing rate, not in suppression of an ongoing firing. In response to pure
tones roughly half of the neurons respond only to the onset, while the other
half respond with sustained firing (Woolley and Casseday (2004) further
broke down these response patterns into 5 subgroups). The onset-neurons
are responding slightly faster with a first-spike latency of 10.31 ± 0.44
ms while the neurons with ongoing activity show a first-spike latency of
13.8± 1.05 ms (Amin et al. (2010) report a mean latency of 7.1 ms using
conspecific songs and estimations of STRFs). The CFs and the response
thresholds of all neurons are broadly distributed over the whole frequency
and loudness range. Also tuning curves range from narrow (< 1.5 kHz) to
broad, regardless of any other feature of the neurons.

In a second study Woolley and Casseday (2005) researched the response
of MLd neurons to more complex sound, namely white noise, band-limited
noise, frequency modulated sweeps, and sinusoidal amplitude-modulated
tones. Their main result was that the response to noise of most cells can
be well predicted from the pure tone responses, contrary to responses in
cortical cells (see sections 3.2 and following). However, a small fraction of
neurons (13%) showed a selective response for up- or downsweeps. These
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responses can not be explained with the simple features obtained from
pure-tone responses. The common feature in these neurons was that the
gained frequency-tuning curve was asymmetric, a feature unseen in neu-
rons without selectivity for sweeps. For the amplitude-modulated tones,
most neurons, except for a big fraction of onset neurons, did respond to
the tone modulation. The best modulation frequencies were found to lie
between 20 Hz and 200 Hz (or 140 Hz, depending on the method), a range
“well suited for encoding the temporal modulations that characterize zebra
finch song”. These findings were generally confirmed calculating STRFs
using natural birdsong (Woolley et al., 2009). However, the neurons in
MLd are able to change their response property depending on the stimu-
lus: (Woolley et al., 2006) found that the STRFs had spectrally narrower
excitatory and inhibitory subfields when using modulation-limited noise
stimuli than when using CON. But the STRFs had temporally narrower
and faster subfields when using CON than when using noise stimuli. This
change leads to a more precise and faster coding of CON - a behaviorally
relevant stimulus - compared to noise in MLd.

3.1.6. Thalamus - Nucleus Ovoidalis

The auditory relay between midbrain and cortex is formed by the thala-
mic nucleus ovoidalis (Ov). It is sometimes functionally further subdivided
into its core (Ov core), nuclues ovoidalis medialis (Ovm) and the surround-
ing shell (Ov shell) (Vates et al., 1996). Ov receives auditory input from
both ipsi- and contralateral MLd (Karten, 1967; Akesson et al., 1987),
as well as from ipsi- and contralateral LL (Wild et al., 2010) and gets
feedback from the RA Cup (Martin Wild et al., 1993; Mello et al., 1998).

The functional role of Ov is not well understood and only few studies
have been published. According to Amin et al. (2010) “because it has been
difficult to record single unit activity from this small ovalshaped nucleus
deep in the brain”. The lack of knowledge is unfortunate as Brauth et al.
(2007) showed gene-expression-based evidence for neural plasticity in Ov
during the process of familiarization and habituation (in budgerigars).
An early electrophysiological study was conducted by Bigalke-Kunz et al.
(1987) in head-restrained European starlings. Their main findings where
a tonotopic organization of Ov as well as a high spontaneous firing rate
(mean 61 Hz) compared to MLd (see section 3.1.5). A more recent study
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was performed by Amin et al. (2010) in anesthetized zebra finches. Playing
back conspecific songs and white noise they estimated STRFs. In contrast
to Bigalke-Kunz et al. (1987) they found a much lower background firing
rate of 3.25±4.05 Hz, yet still significantly higher than in MLd (0.15±0.46
Hz). The mean latency derived from the STRFs was 10.2 ms, responding
3.1 ms later than MLd on average and 2.2 ms before subfield L2a. Their
main result was a much closer similarity of STRFs in Ov to the more
complex STRFs in Field L than to the simpler STRFs in MLd. This
similarity and the high differential latency to MLd urge us to drop the idea
of Ov being a simple relay between midbrain and cortex. Further studies
are needed to understand the computational role of Ov and whether traces
of feedback signals from higher areas can encountered.

3.2. Primary Auditory Cortical Nucleus - Field L

Field L in birds was first defined by Rose (1914) by Nissl staining. It was
redefined by Karten (1968) as the region where axons from Ov terminate
in the avian cortex. Field L lies in the birds nidopallium and as auditory
thalamorecipient zone in the bird’s cortex. It is the putative homologue
of the primary auditory cortex in mammals (Jarvis et al., 2005). It is
subdivided into four (Bonke et al., 1979) or sometimes into five subfields
(Fortune and Margoliash, 1992), L1, L2a, L2b, and L3. However, the two
definitions (Rose, 1914; Karten, 1968) of Field L are not completely con-
gruent. When defined, the fifth subfield is the discrepancy of the two above
definitions and is, irritatingly, again called (field) L. The subdivisions into
the four subfields are very well-defined by staining studies (Fortune and
Margoliash, 1992) as well as by tracer studies (Vates et al., 1996).

Main input to Field L is provided to L2a by the Ov core (Vates et al.,
1996). It is thereby the main auditory thalamorecipient area. This finding
is supported by the time to peak response measured by Sen et al. (2001).
Neurons in L2a show a peak response at 14± 1 ms after optimal stimulus
onset, while neurons in the other subfields are significantly slower (L2b:
20± 1 ms, L1: 21± 3 ms, L3: 22± 3 ms). Furthermore L2a is reciprocally
connected to all other subfields of Field L as well as to CLM (Vates et al.,
1996). L1 and L3 both receive thalamic input from Ov shell. They are
reciprocally connected to L2a and to each other. L2b receives thalamic
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input from Ovm. It is reciprocally connected to L2a. All subfields are
further reciprocally connected to CLM (Vates et al., 1996).

The internal organization of these subfields is not completely understood.
In guinea fowls (Bonke et al., 1979) and mynah birds (Langner et al., 1981)
tonotopic maps have been found. In zebra finches Gehr et al. (1999) found
several tonotopic gradients which surprisingly were not congruent to the
subfields.

The measured figures for the background firing rates of neurons in Field
L differ greatly : Grace et al. (2003) reported a mean background firing
rate of 2.8± 2.7 spikes per second in anesthetized zebra finches. Woolley
et al. (2009) on the other hand reported a mean background firing rate
of 0.6 spikes per second in zebra finches anesthetized with only a slightly
higher dose of urethane.

One of the first studies on the functionality of Field L was performed by
Leppelsack and Vogt (1976) in immobilized starlings. They played natural
sounds, mainly conspecific songs and calls. They analyzed and categorized
the responses by their predominance for certain features. Most of their
neurons responded to simple spectral features. In conclusion they stated
that “there remains a fundamental doubt whether it will be possible to
assign it [Field L] a distinct and clearly defined function”.

Margoliash (1986) investigated the preferences of neurons in Field L of
anesthetized white-crown sparrows. However, he found no preference for
BOS over REV or other modifications of BOS. Lewicki and Arthur (1996)
looked for selectivity in Field L and HVC of anesthetized zebra finches.
They compared BOS versus REV, the syllables of BOS in reverse order,
and the subsyllables of BOS in reverse order. They found a slight BOS-
selectivity, however much less than in HVC. This finding is supported
by newer studies finding slightly negative (Janata and Margoliash, 1999,
in L1) and zero to slightly positive (Amin et al., 2004, for the different
subfields) mean BOS-REV selectivity. When comparing the responses for
BOS and CON in anesthetized zebra finches a negative mean selectivity
throughout all subfields of Field L is found (Janata and Margoliash, 1999;
Amin et al., 2004). On the other hand, for the acoustically similar TUT
they measured a negative mean TUT-CON selectivity only in L2a, while
in the other subfields they measured mean selectivities close to zero. This
non-selectivity was later also found in juveniles (Amin et al., 2007).
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Neurons in Field L tend to prefer natural stimuli over artificial stimuli,
except white noise due to the big onset response (Grace et al., 2003; The-
unissen et al., 2004). However, these preferences do not seem to be con-
genitally given. Comparing responses in juvenile (roughly 35 dph) and
in adult birds, Amin et al. (2007) mostly found significantly lower selec-
tivities for CON over the different artificial stimuli in the juvenile birds.
The one big exception was white noise: while neurons in L2a were selec-
tive for CON against white noise, the mean selectivity disappeared in the
adult bird. Cross-fostering experiments between different finches reveal
that this development of neural responses is not purely hard coded but at
least partly experience dependent (Woolley et al., 2010a; Woolley, 2012;
Hauber et al., 2013).

One question arising in these studies was the influence of the anesthesia on
the auditory responses. However, Cardin and Schmidt (2003) stated that
“[A]uditory responses in Field L were unaffected by arousal in both acute
and chronic recordings. In fact, Field L auditory responses in chronically
implanted birds are very similar during sleep, light sedation, deep anesthe-
sia, and wakefulness”.

When estimating STRFs in Field L many - however, less than in MLd
or Ov - neurons are found to respond to onsets regardless of frequency
(Woolley et al., 2009; Amin et al., 2010). The second largest group in
Field L is formed by neurons responding mainly to a certain frequency
(Woolley et al., 2009; Amin et al., 2010). The rest of the neurons respond
to features such as harmonic stacks (Sen et al., 2001; Woolley et al., 2009),
offsets (Woolley et al., 2009; Amin et al., 2010), changing frequencies (Sen
et al., 2001; Nagel and Doupe, 2008; Woolley et al., 2009), as well as to
complex, non-categorizable stimuli (Sen et al., 2001; Nagel and Doupe,
2008; Woolley et al., 2009; Amin et al., 2010). Neurons in L2(a) respond
faster (Sen et al., 2001; Nagel and Doupe, 2008) and integrate the stim-
ulus input over shorter periods Nagel and Doupe (2008) than neurons in
L1 and L3. Also, responses of neurons in L2a are more linear, i.e. the
STRFs explain more of the response (L1: 0.48± 0.05 , L2a: 0.63± 0.02 ,
L2b: 0.44± 0.04, L3: 0.37± 0.05) (Sen et al., 2001). One possible source
of nonlinearity is given by Nagel and Doupe (2008): they propose that
excitatory and inhibitory regions in the STRFs have different threshold,
leading to intensity-depending STRFs. A summary of STRFs found in
Field L is given as eMTF: most of the energy is distributed between 5 and



38 The Auditory System of Songbirds

60 Hz temporal modulation and between 0 and 1 cycle/kHz spectral mod-
ulation (Woolley et al., 2005). However, the upper limitations are given
by the noise-induced necessity for smoothing the STRFs4. Newer data
indicates that the upper limit for both temporal and spectral modulation
might be higher (Woolley et al., 2009).

In contrast to the clearly auditory functions of Field L Keller and Hahn-
loser (2009) found subsets of neurons in Field L and CLM showing selective
response to auditory perturbations only during singing or stereotyped re-
sponses during singing even when perturbed, but not during playback.
These neurons might indicate the existence of an efference copy of the
song’s motor command as well as an error sensitivity in these areas.

3.3. Secondary Auditory Cortical Nuclei

3.3.1. NCM

The caudomedial nidopallium (NCM) is an anatomically structure adja-
cent to L3 (Mello and Clayton, 1994). It receives auditory input from
L2a and L3 as well as from the Ov shell and is reciprocally connected to
CMM (Vates et al., 1996). It further gets input from ParaHVC (Foster
and Bottjer, 1998).

NCM is thought to be a key area in formation and storage of auditory
memory, especially the memory of TUT (Hahnloser and Kotowicz, 2010).
A first hint was given by Mello et al. (1992). They found an increased
expression of ZENK - an immediate early gene involved in memory for-
mation (Goelet et al., 1986) - in response to CON, much less in response
to heterospecific songs, and none after tone bursts. However, there is ha-
bituation: the increase in ZENK-expression rapidly declines back to back-
ground levels within 30 minutes, if a single CON is presented repeatedly.
But as soon as a new CON is introduced, ZENK-expression is increased
again (Mello et al., 1995; Gentner, 2004).

The necessity of ZENK-expression in the auditory system for tutor mem-
ory formation was shown by London and Clayton (2008): By tempo-
rary pharmacological obstruction of ZENK-expression in primary and sec-

4 see Section 2.2.2
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ondary auditory areas before any tutoring session they successfully sup-
pressed the capability of copying TUT in zebra finches.

The habituation seen in ZENK-expression is also supported by measure-
ments of spike responses: a fast reduction of multiunit responses to re-
peated presentation of the same CON is found, especially between the first
few presentations (Chew et al., 1995; Stripling et al., 1997). However, after
several hundred presentations of a single song, responses to previously pre-
sented CON are similarly strong as when first presented (Stripling et al.,
1997). But when training starlings in a go/no-go operant-conditioning
procedure, Thompson and Gentner (2010) did not find a general habitu-
ation to CON due to simple exposure, but only when the song was cou-
pled to behavior. Additionally they found a steep gradient of habituation
along the dorsal-ventral axis: while the most dorsal quarter of neurons of
NCM showed no or even negative habituation, the most ventral neurons
in NCM showed significantly lower responses to the trained CON than to
novel CON.

Strong evidence for NCM being the location of TUT memory was provided
by Gobes and Bolhuis (2007): they measured the behavioral preference of
adult male zebra finches for the TUT compared to novel CON and then
lesioned NCM. They showed that preference was significantly reduced,
but the birds still were able to sing and to distinguish male from female
calls. However, they did not test, whether the effect was TUT vs. CON
or familiar vs. novel songs.

3.3.2. CM

The caudal mesopallium (CM) is an area adjacent to L1, separated from
Field L by the lamina hyperstriatica. It is subdivided into a medial (CMM)
and a lateral part (CLM) which are highly interconnected. CLM is recip-
rocally connected to all subfields in L and to CMM. It projects to NIf,
HVC shelf and RA Cup. CMM is reciprocally connected to NCM and
CLM (Vates et al., 1996). There is some indication that CM also projects
directly to HVC (Bauer et al., 2008). There is some further evidence that
CM receives input from UVA and Ov shell (Martin Wild et al., 1993;
Fortune and Margoliash, 1995; Vates et al., 1996).

In accordance with the hierarchical connectivity found, neurons in CM will
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mostly respond later to stimuli than neurons found in Field L (Sen et al.,
2001). In parallel the neurons tend to respond less linearly to natural
stimuli, i.e. STRFs explain less of the response variability than in L1,
L2a, and L2b (0.37 ± 0.06, similar to L3) (Sen et al., 2001). However, this
lower number could also result from a smaller number of spikes. Generally
responses to CON in CM are smaller than in Field L (Sen et al., 2001) and
have lower z-score (Grace et al., 2003; Amin et al., 2004). Nevertheless,
the neurons show slightly positive selectivities for BOS vs. CON and for
BOS vs. REV (Amin et al., 2004; Bauer et al., 2008), as well as a clear
selectivity for CON over artificial stimuli (Grace et al., 2003; Bauer et al.,
2008). In contrast to Field L this selectivity is already present in young
birds (Amin et al., 2007).

The weaker CON-responses in CM however are not global, i.e. in response
to all CON. Neurons in CM often are very selective for certain (complex)
features. Interestingly, this selectivity for certain features is negatively
correlated to the background firing rate of the neurons in CMM of star-
lings (Meliza et al., 2010). The features for which the neurons are selective
are not just random features but trained by experience and behavioral rel-
evance. When trained on a standard go/no-go operant-conditioning proce-
dure starlings are able to distinguish two classes of CON motives. Jeanne
et al. (2011) measured responses to these motives in CMM and CLM. In
both subdivisions the entropy of firing rates was higher in response to re-
warded motives than to unrewarded motives and this entropy was again
higher than to novel motives. Identically was the mutual information be-
tween firing rate and motives highest for the rewarded songs and higher for
unrewarded than novel motives. Mutual information between motives and
firing rates was generally higher in CMM than CLM, and neurons in CMM
had a higher coefficient of variation. Also, neurons in CMM encoded signif-
icantly more information about the rewarded/unrewarded categories than
neurons in CLM and more information about the rewarded/unrewarded
categories than about random categories.

Similar to NCM also CMM shows an elevated ZENK-expression after the
playback of novel songs. But in contrast to NCM the number of ZENK-
positive cells was also above baseline after the playback of familiar songs,
although lower than after novel songs (Gentner, 2004).

However, similar to Keller and Hahnloser (2009) in Field L, Bauer et al.
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(2008) found a discrepancy in responses while listening to BOS and activity
during singing in many neurons in CM. Where this discrepancy arises from
remains unclear.

3.4. Tertiary Auditory (Premotor) Cortical Nuclei

3.4.1. NIf

The interfacial nucleus of the nidopallium (NIf) is a small nucleus located
within Field L, between L1 and L2a (Fortune and Margoliash, 1995). NIf
gets input from CLM (Vates et al., 1996; Bauer et al., 2008) and UVA
(Nottebohm et al., 1982; Akutagawa and Konishi, 2005) and is recipro-
cally connected to Av (Akutagawa and Konishi, 2010). NIf shows clear
premotor activity related to singing (McCasland, 1987; Lewandowski and
Schmidt, 2011). However, the role of NIf in song production is not well
understood. It seems that in adult birds NIF is not necessary for song
production and that lesions have only minor impact on song quality, but
influence syllable and motive sequence (Hosino and Okanoya, 2000; Cardin
et al., 2005; Naie and Hahnloser, 2011). In older juveniles in contrast NIf
lesions significantly reduce song quality (Naie and Hahnloser, 2011).

But neurons in NIf also show auditory responses. Main auditory input to
NIf is provided through CLM, as auditory responses are abolished while
CM is inactivated (Bauer et al., 2008). Similar to HVC, auditory response
(as well as baseline firing) is modulated by the behavioral state, although
not completely abolished: when aroused, baseline firing rates are higher
and response strength is reduced (Cardin and Schmidt, 2004a).

Auditory neurons in NIf present themselves as BOS selective. In anes-
thetized zebra finches Janata and Margoliash (1999) found 13 out of 14
neurons to be selective for BOS vs. CON (mean selectivity d′ = 1.50) and
15 out of 16 to be selective for BOS vs. REV (mean selectivity d′ = 1.39).
Similar values were obtained by Coleman and Mooney (2004) (BOS vs.
CON d′ = 1.26± 0.23, BOS vs. REV d′ = 1.29± 0.23). This clear BOS-
selectivity arises in NIf, as neurons in CM - the source of auditory input
to NIf (Bauer et al., 2008) - does not respond with such clear selectivity.



42 The Auditory System of Songbirds

3.4.2. HVC

HVC (used as a proper letter-based name5) is probably the best stud-
ied nucleus in the songbird’s brain. Reasons for this scientific attention
are that HVC is uniquely found in songbirds (Lovell et al., 2008) and is
considered to be the control center of song production, as discussed below.

HVC is located in the caudal nidopallium (Reiner et al., 2004c) and gets
input from UVA, NIf, and MMAN (Nottebohm et al., 1982; Fortune and
Margoliash, 1995; Vates et al., 1997; Akutagawa and Konishi, 2005) and
is reciprocally connected to Av (Nottebohm et al., 1982; Akutagawa and
Konishi, 2010). There is some evidence that the connection to RA is also
reciprocal (Roberts et al., 2008). Whether or not it also gets input from
the HVC shelf is unsure. Few axons from the shelf to HVC have been
found (Mello et al., 1998), as well as dendrites of HVC neurons in the
shelf (Fortune and Margoliash, 1995; Vates et al., 1996). But there is no
clear evidence whether these connections are functional (Wang et al., 2001;
Shaevitz and Theunissen, 2007).

HVC is often considered to be the central nucleus in song production.
It is necessary for song production in older juveniles and adults: when
HVC is bilaterally lesioned birds will restart singing subsong. However,
the production of subsong as well as calls is not impaired by this lesion
(Aronov et al., 2008). Further, by cooling of HVC the song can be slowed
down by up to 45%, while cooling of downstream nucleus RA has no
influence on speed (Long and Fee, 2008).

HVC shows great sexual dimorphism. In zebra finches the volume of HVC
differs by a factor of 8 to 10 between adult males and females (Nottebohm
and Arnold, 1976; Gahr and Metzdorf, 1999). In general there seems
to be a positive correlation between the size of the song repertoire of a
bird and the size of its HVC, across species (Devoogd et al., 1993b) and
sometimes within species (Nottebohm et al., 1981; Airey et al., 2000), but
not for all (Brenowitz et al., 1991; MacDougall-Shackleton et al., 1998).
In contrast, the size of HVC is not constant, in open-ended learners -

5 Originally the nucleus was called hyperstriatum ventrale, pars caudalis (Notte-
bohm and Arnold, 1976) which turned out to be anatomically incorrect. The
acronym was so prominent by then that it was preserved as a proper name
(Reiner et al., 2004c). In between it was sometimes referred to as higher vocal
center to match the acronym.
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birds that relearn a new song each year such as canaries - the size of HVC
varies with the season, it is bigger in spring than in autumn (Nottebohm,
1981; Nottebohm et al., 1986; Alvarez-Buylla and Kirn, 1997; Vellema
et al., 2010). This example of (adult) neurogenesis is not limited to open-
ended learners but has also been observed in closed-ended learners, during
development as well as in adults where the new neurons are incorporated
in HVC and replacing dead neurons without altering the song (Nordeen
and Nordeen, 1990; Tramontin and Brenowitz, 1999; Lipkind et al., 2002).

Generally three categories of neurons in HVC are distinguished: project-
ing to RA (HVCRA), projecting to Area X (HVCX), and interneurons
(HVCint). HVCRA and HVCX neurons are known to fire very sparse and
reliable bursts of action potentials while singing and while listening to
BOS. In singing zebra finches HVCRA fire zero or one burst per motive
rendition at very high precision (Hahnloser et al., 2002; Kozhevnikov and
Fee, 2007), while HVCX neurons will fire zero to four bursts per motive
rendition at a slightly lower precision (still, for most neurons the root-
mean-square jitter of the first spike is < 2 ms) (Kozhevnikov and Fee,
2007). In contrast, HVCint fire throughout the whole motive with a mod-
ulated firing rate and without a precise single spikes (Hahnloser et al.,
2002; Kozhevnikov and Fee, 2007).

Between all three types of HVC neurons direct or indirect connections
were found, but the main connectivity was HVCRA neurons inhibiting
HVCX neurons, most likely disynaptically through HVCint neurons. But
also HVCX neurons inhibiting other HVCX neurons and HVCX neurons
exciting HVCRA neurons were prominently found (Mooney and Prather,
2005).

An interesting feature was discovered by Wang et al. (2008): as men-
tioned above, the cortex of birds consists of two hemispheres that are only
connected through mid- and hindbrain, as birds do not possess a corpus
callosum. They addressed the question which hemisphere was dominantly
producing the song. What they found was a rapid switch of dominance
between left and right HVC every few dozens of ms throughout the song
and surprisingly not synchronized with the syllable structure of the song.
The underlying mechanism of the switch however remains unknown.

The auditory responses of neurons in HVC is gated and depending on the
behavioral state of the bird: in zebra finches neurons in HVC respond
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neuron type mean d′ BOS vs.
REV

mean d′ BOS vs.
CON

HVCRA 1.3 - 1.53 1.72

HVCX 0.59 - 1.65 0.68

HVCint 2.54 - 3.0 0.27

unspecified multiunit 1.7 2.3

Tab. 3.1: Mean d′-values reported for HVC-neurons in anesthetized zebra
finches (Compiled from: Theunissen and Doupe, 1998; Mooney, 2000; Rosen
and Mooney, 2003; Coleman and Mooney, 2004).

to auditory stimuli during anesthesia, sleep, and probably quiet resting,
but not when aroused or singing (Schmidt and Konishi, 1998; Cardin and
Schmidt, 2003, 2004a). In swamp sparrows and bengalese finches auditory
responses in HVCX neurons are only gated off while singing (Prather et al.,
2008;contrariwise: Sakata and Brainard, 2008). The mechanism of gating
is not completely understood, but it is known that UVA and probably
NIf play an important role (Cardin and Schmidt, 2004b,a; Coleman et al.,
2007). Main auditory input to HVC is provided through CM and NIf
as deactivation of CM shuts down nearly all auditory response in HVC
and NIf and deactivation of NIf auditory response in HVC (Coleman and
Mooney, 2004; Cardin et al., 2005; Bauer et al., 2008). However, also
MMAN provides auditory input to HVC (Vates et al., 1997; Williams
et al., 2012).

When HVC shows auditory response (see above), neurons of all three
categories in HVC are known to respond very selectively for BOS. Janata
and Margoliash (1999) measured a highly significant preference BOS vs.
CON or REV in anesthetized zebra finches, without specifying the type of
neuron in HVC. Figures reported in other studies supported this finding
(see Table 3.1). In contrast, Cardin and Schmidt (2003) reported that
most neurons in HVC are unselective in awake zebra finches and that
responses were very unstable. However, a more thorough study found an
overall BOS vs. CON selectivity of d′ = 0.640± 0.075 for putative HVCint

in awake zebra finches (Raksin et al., 2012). This value is significant
and in the range of values reported for anesthetized birds. Even higher
values have been reported in awake bengalese finches (Sakata and Brainard
(2008): unidentified neurons, BOS vs. REV d′ = 3.01, BOS vs. CON
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d′ = 3.18). Furthermore, Sakata and Brainard (2008) detected for the
first time auditory feedback during singing.

A set of studies has focused on the source of BOS-selectivity in HVC
neurons. For all three categories neurons were found to receive already
selective input from NIf (Rosen and Mooney, 2006). Interestingly, even
though all three categories show a selectivity BOS, their auditory responses
are completely different. In anesthetized birds both types of projection
neurons have a very low baseline firing rate (Mooney (2000): HVCRA:
0.6± 0.4 Hz, HVCX:0.6± 1.5 Hz) and in response to BOS (roughly 1 Hz
above baseline) and fire with a high sparseness (Coleman and Mooney,
2004). In contrast HVCint neurons fire with a baseline rate of 12.0 ± 4.3
Hz (Mooney, 2000) and with roughly 11 Hz above baseline in response
to BOS (Coleman and Mooney, 2004). The projection neurons do not
differ much in the firing rates, but more in their subthreshold behavior in
response to BOS: while HVCRA are generally depolarized throughout the
whole BOS presentation, HVCX are mainly hyperpolarized during BOS
presentation (Mooney, 2000). This difference in subthreshold behavior is
unmasked when (further) depolarizing the neurons by current injection.
While HVCRA neurons stay BOS selective, HVCX lose their selectivity
or the selectivity is even reversed (Mooney, 2000). However, when local
inhibition was shut down the response of HVCX neurons became similar
to the one of HVCRA neurons (Rosen and Mooney, 2006).

Prather et al. (2008) addressed the question of how auditory response to
BOS and premotor activity of HVC neurons are related in swamp spar-
rows. They actually found a very precise and robust mirroring in HVCX

neurons, firing at the same point in the song both while singing and lis-
tening to BOS. This finding means that if HVCX have influence on sound
production, they will not respond to the same sound they produce. A
sound produced due to the firing of a neuron will be produced after the
firing of that neuron. However while listening the neuron can only fire in
response to sound that has already passed. So either HVCX neurons are
not premotor in the sense that they influence the motor output, or HVCX

neurons do not respond to the sound they influence themselves. Whether
or not this mirroring also happens in zebra finches remains to be tested.
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3.4.3. Av

The nucleus avalanche (Av) is a small nucleus in the middle of CM (Not-
tebohm et al., 1982; Akutagawa and Konishi, 2010). Av gets input from
UVA and is reciprocally connected to NIf and HVC (Akutagawa and Kon-
ishi, 2010). Even though this nucleus has been known for a long time,
it was mostly ignored and and only recently moved back into focus of
research. It is known that while singing Av has an amplified ZENK-
expression (Jarvis and Nottebohm, 1997; Feenders et al., 2008). Addi-
tionally Akutagawa and Konishi (2010) showed - as expected from its
connectivity - that neurons in Av are clearly BOS-selective, in contrast to
the surrounding CM. However, up to date no further electrophysiological
study is known to me measuring the neural activity in Av, neither the
premotor activity during singing, nor the auditory responses. But due to
its neglect and its position within CM, there is a certain risk that studies
on CM might have unintentionally incorporated Av.

3.5. Auditory Responses in Other Areas

3.5.1. Premotor Nuclei and the Anterior Forbrain Pathway

The nucleus uvaeformis (UVA) is a thalamic nucleus that amongst other
inputs gets bilateral auditory input from LL (Wild et al., 2010). It also
integrates different sensory cues, such as visual or somatosensory (Wild,
1994). It projects to the premotor nuclei NIf, Av, and HVC (Nottebohm
et al., 1982; Akutagawa and Konishi, 2010). The activity of neurons in
UVA is depending on the behavioral state of the bird (Hahnloser et al.,
2008). By changing the state or by electrical stimulation of the neurons,
auditory responses in HVC is gated on or off (Coleman et al., 2007; Hahn-
loser et al., 2008). The neurons in UVA also show clear auditory responses
under anesthesia. But in contrast to the other premotor nuclei, most neu-
rons in UVA are unselective (Coleman et al., 2007).

The robust nucleus of the archopallium (RA) is a nucleus that gets direct
input from HVC as well as indirect through the anterior forebrain pathway
(AFP) (Nottebohm and Arnold, 1976; Bottjer et al., 1989) and probably
from the RA cup (Mello et al., 1998). It projects ipsilaterally directly and
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indirectly to the hypoglossal nucleus, a motor nucleus that innervates the
muscles in the syrinx and ipsilaterally directly and indirectly to brainstem
nuclei controlling respiration (Nottebohm and Arnold, 1976; Reinke and
Wild, 1998; Roberts et al., 2008). RA is absolutely needed for song pro-
duction: while unilateral RA lesions will lead to a distortion of the song,
bilateral lesion will stop any song production. But the bird will still be
producing calls (Nottebohm and Arnold, 1976; Aronov et al., 2008). Neu-
rons in RA show a clear selectivity for BOS (Doupe and Konishi, 1991;
Vicario and Yohay, 1993). However, as HVC is the main direct or indirect
auditory input to RA, responses are also gated (Dave et al., 1998).

The indirect pathway from HVC to RA is formed by the anterior forebrain
pathway (AFP) a cortico-basal-thalamic loop. HVC is projecting to Area
X which is projection to the medial nucleus of the dorsolateral thalamus
(DLM). DLM is projecting to the lateral magnocellular nucleus of the an-
terior nidopallium (LMAN) which projects back to Area X as well as to
RA (Vates and Nottebohm, 1995). Area X is part of the songbird’s basal
ganglia and further projects bilaterally to VTA via the ventral pallidum.
Dopaminergic neurons in VTA in return mainly innervate ipsilaterally the
striatal part of Area X (Gale et al., 2008). These dopamineric neurons
might be an indication of an involvement of the AFP in learning (Schultz,
1998). The AFP is not needed for song production, but during song de-
velopment the AFP is driving the song (Scharff and Nottebohm, 1991;
Aronov et al., 2008). Although it is not necessary for song production in
adult birds, the output of LMAN to RA induces slight variations in the
song and might be involved in song maintenance (Brainard and Doupe,
2000; Kao et al., 2005).

As in the other premotor nuclei neurons in both Area X and in LMAN are
responding very selectively for BOS vs. REV or CON. But this selectivity
for BOS is much lower in juvenile birds singing plastic song and is raised
while developing the adult song (Doupe and Konishi, 1991; Doupe, 1997).
Unlike in HVC premotor activity in Area X and in LMAN is completely
different from auditory response to BOS (Hessler and Doupe, 1999). It
remains an open question of how the AFP is involved in song learning.
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3.5.2. HVC Shelf and RA Cup

The HVC shelf and RA cup are two nuclei bordering the premotor nuclei
HVC and RA. Both areas get auditory input from L1, L3, and CLM and
the HVC shelf projects to the RA cup (Fortune and Margoliash, 1995;
Vates et al., 1996; Mello et al., 1998). Despite their physical proximity
there is disputed evidence that they provide (auditory) input to the re-
spective premotor nuclei (Fortune and Margoliash, 1995; Vates et al., 1996;
Mello et al., 1998; Wang et al., 2001; Shaevitz and Theunissen, 2007). The
RA cup projects down to OV shell, MLd, and LL (Martin Wild et al.,
1993; Mello et al., 1998). The two nuclei are both considered auditory:
after song playback both areas show an increased ZENK-expression (Mello
and Clayton, 1994; Jarvis et al., 1998). Further weak evidence of auditory
response is given by functional magnetic resonance imaging (fMRI) where
a response in the blood oxygenation level-dependent (BOLD) signal could
be seen in the region of HVC/HVC shelf and RA/RA cup after auditory
stimulation (Voss et al., 2007). However, electrophysiological confirmation
is still missing. Whatever the use of such an auditory loop in parallel to
the premotor system is, still is unclear. Farries (2004) speculates that it
could be the homologous of a loop found in nonoscine birds and that the
song system evolved out of this loop.

3.5.3. MMAN and VTA

The medial magnocellular nucleus of the anterior nidopallium (MMAN)
receives input from the dorsomedial nucleus of the posterior thalamus
(DMP) and projects to HVC and paraHVC (Vates et al., 1997; Foster
et al., 1997). The role of MMAN is not understood, however, DMP gets
input from the hypothalamus and could convey information about the
internal state of the bird and control social and sexual behavior (Foster
et al., 1997). Furthermore DMP could also receive input from RA and
thereby forming a loop (Williams et al., 2012). Interestingly, neurons in
MMAN show auditory response and are highly selective for BOS (Vates
et al., 1997; Williams et al., 2012). The source of the auditory input is
unknown. But as auditory response in MMAN lacks behind HVC and
is similar to the response in HVC (Williams et al., 2012) there is a high
chance that auditory input is delivered directly or indirectly through HVC.
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The ventral tegmental area (VTA) gets input from Area X via the ventral
pallidum (VP) and projects by dopaminergic neurons to most of the song-
bird’s songsystem, but mainly to the striatal part of Area X (Gale et al.,
2008). Both, VP and VTA, show clear auditory responses and neurons in
both areas are highly selective for the birds own song (Gale and Perkel,
2010). During singing, responses in VTA are highly depending on social
context: most neurons fire with a significantly high rate while singing di-
rected song (Yanagihara and Hessler, 2006). Dopamin is often associated
with learning and expectation (Schultz, 1998), it is however not yet clear
what role it plays in song learning. There are some indication that it in-
fluences the context dependency of song variability (Leblois and Perkel,
2012).
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Chapter 4

A New Nonsymmetric Sparse
Coding Algorithm

EM/3/Green: We’ll all die here!
Mr. Spock: A statistical probability.
Lara: You ever quote anything besides statistics, Vulcan?
Mr. Spock: Yes. But philosophy and poetry are not
appropriate here.

Star Trek: The Jihad

Mathematically speaking encoding is the mapping of sequences of source
alphabet symbols onto new sequences of target alphabet symbols. This
encoding is called lossless or lossy depending on whether the mapping is
injective or not. So if we have a thought and vocalize it, it is the encoding
of a thought as sound. If we write down what has been said, it is the
encoding of sound as letters. And if a third person reads these letters,
they will again be encoded as neural activity, forming a new thought. But
as you can see, each encoding looks different. Biological encoding schemes,
as the ones presented, are optimized to their field of application.

A possible goal of encoding is compression of the data in order to minimize
the amount of transferred symbols. Maybe the channel of transmission is
noisy, so the goal a robust encoding. Or the channel is unsave, so we need
an encoding to ensure that the sequence is hard to interpret. Or exactly
the opposite, we want an encoding that can be interpreted without heavy
computation. So, if we artificially create an encoding scheme, we have to
know what we want.
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Fig. 4.1: Quince, Cabbage, Melon and Cucumber by Juan Sánchez Cotán. (A)
The painting itself. (B) Histogram of the pixel values in each color channel. Very
precise, but not informative about the content of the picture. (C) Histogram of
the fruit/vegetable count in the cabbage and apple channel. Even tough not as
exact as the histogram of pixel values, we have a better understanding of picture
content.

4.1. Independent Component Analysis

The name ’Independent Component Analysis’ (ICA) was coined in 1994,
when Pierre Comon published ’Independent component analysis, a new
concept?’ (Comon, 1994), however other concepts existed already before.
The basic idea of ICA is that the data is a sum of a lot of independent
features. Imagine your data being the painting ’Quince, Cabbage, Melon
and Cucumber’ by Juan Sánchez Cotán (Figure 4.1A). Looking at the
pixel values in Figure 4.1B, we know how reddish, greenish, and blueish
our painting is. And we can be pretty sure that Juan Sánchez Cotán did
not plan to paint a picture with such a color histogram. He was actually
thinking of painting a quince, a cabbage, a melon, and a cucumber. These
vegetables are the independent components of the picture. If we move one
vegetable as a whole a few pixels, the content of the painting would still
be the same, but if we move random patches of the painting by the same
amount, we would no longer consider it a baroque painting, but rather
something more modern.

Mathematically speaking we have a generative model. The observed data
X was created by (unknown) independent underlying causes S being lin-
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early mapped onto the space of observation by a mixing matrix A:

X = A · S, (4.1)

where X is a vector representing the picture in pixel space, S is a vector
of the underlying causes (1 cabbage, 0 apples, 1 quince, ...) and A is a
matrix with the picture (and the position) in pixel space of a cabbage in
the first column, of an apple in the second column, and so on.

The goal of an ICA algorithm is to find an unmixing matrix W so that
the vector

Y = W ·X = W · A · S (4.2)

is equal to to the underlying causes S, except for scaling and permutation
(W ·A is a square matrix with exactly one non-zero entry in each row and
column). The problem is, that normally both, the underlying causes S and
the mixing matrix A are unknown. But assuming that the elements of the
underlying causes S are independent of each other, we only need to find a
matrix W , so that the elements of Y are independent (p(Y ) =

∏
i pi(Yi))

over all our data (e.g. all paintings in all galleries). Unless more than one
element Si is Gaussian distributed, the matrix W is the can be found.

One problem is that in real life nothing is ever independent. If we have
a painting with already a cabbage on it, there is an increased probability,
that we will see more vegetables on the same painting. A second problem
is the assumption of linearity. In the picture overlying elements are not
adding up, but they conceal one another. Three-dimensional elements will
create shadows that have shape depending nonlinearly on other elements.
We therefore have to assume that no matrix W exist that projects our data
X onto truly independent components. The goal of an ICA algorithm thus
is not to find independent components, but a projection W that maximizes
the independence of the components.

4.1.1. Contrast Function

One faces the problem of how to define the level of independence. Typical
contrast functions to approximate independence of the elements Yi are:
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• Maximization of negentropy (Hyvärinen, 1998)

• Minimization of mutual information or minimization of the Kullback-
Leibler-divergence between distribution and product of the marginal
distributions (Comon, 1994; Hyvarinen, 1999)

• Maximization of the likelihood given a distribution of the underlying
causes (including the infomax principle) (Pham et al., 1992; Bell and
Sejnowski, 1995)

• Maximization of the kurtosis or other cumulant-based contrast func-
tion (Hyvarinen and Oja, 1997)

However, the differences are not are not as big as it might seem. Mini-
mization of the mutual information is equivalent to the minimization of the
Kullback-Leibler divergence (Hyvärinen, 1999) and asymptotically iden-
tical to a maximum likelihood estimation (Cardoso, 2000). On the other
hand cumulant-based contrast function can be used to approximate both,
the negentropy and mutual information (Hyvärinen, 1999). So finally it
all comes down to choosing between single dimension contrast functions
and multidimensional contrast functions which are actually equivalent to
the sum of single dimensional functions with a decorrelating term.

4.1.2. Optimization Algorithms

4.1.2.1. Preprocessing

After choosing the contrast function there still remains the question of the
optimization to be chosen accordingly. Most often the data is whitened
before the optimization process itself, i.e. we center our data and linearly
transform it, so that the preprocessed data’s covariance matrix is the unity
matrix:

XP = P · (X − 〈X〉) (4.3)〈
XT
P ·XP

〉
= I (4.4)
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Normally this is done using principal component analysis (PCA) which in
the same step can be used to reduce the dimensionality of our data. E
and Λ being the matrix of eigenvectors and the matrix of eigenvalues of
the covariance matrix of our data the projection matrix P becomes

P = Λ−1/2 · ET . (4.5)

However any additional rotation on P fulfills equation 4.4.

4.1.2.2. Gradient Ascent/Descent

Gradient ascent/descent is probably the most straight forward method for
optimization. Bell and Sejnowski (1995) tried to maximize the output
entropy of a two-layer network with nonlinear output units (tanh(Y )).
However as mentioned above, it was shown that this is equivalent to a
maximum likelihood estimation (Cardoso, 1997). The gradient ascent lead
to the following update rule for the projection matrix:

∆W ∝ W T−1 − 2 tanh(Y ) ·XT . (4.6)

Their algorithm does not need a prewhitening of data, but it performs
better when applied. For further speed increase we replaced the stochastic
gradient by the natural gradient (Amari, 1997)

∆W ∝ (I− 2 tanh(Y ) · Y T ) ·W. (4.7)

The great advantage of the natural gradient is not its slightly faster con-
vergence but that it does not need an explicit matrix inversion (however,
for the prove the inverse has to exist).

A gradient descent algorithm for single components was first presented by
Delfosse and Loubaton (1995), where they extract one component after
another by searching for the one-dimensional subspace in which data has
the highest kurtosis. An algorithm for a broad number of cost functions
was later presented by Hyvärinen and Oja (1998).
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The advantage of gradient ascent/descent algorithms is that they can han-
dle both, on-line learning and batch learning. However, when using a gra-
dient ascent/descent algorithm, it should be combined with a line search
algorithm instead of fixed step sizes.

4.1.2.3. Fixed-Point Algorithm

Hyvarinen and Oja (1997) presented a fixed-point algorithm that maxi-
mized the kurtosis of the components. The algorithm, called FastICA,
normally shows good convergence and can be used for estimating the in-
dependent components at once or one component after the other. Later
the algorithm was generalized for any contrast function (Hyvarinen, 1999).
However, the algorithm is restricted to orthogonal components whether
they are learned at once or separately.

4.1.2.4. Neural Network-Inspired Algorithm

The oldest class of algorithms were inspired by neural networks. Jutten
and Herault (1991) published a two-layer network algorithm that decorre-
lated the output of a non-linear output layer:

Y = (I +W )−1 ·X (4.8)

∆W ∝ g1(Y ) · g2(Y )T with ∆Wii = 0. (4.9)

If the network decorrelates the input for any nonlinearities g(.), the out-
puts Yi would be independent. However, this algorithm converges only
under restrictions. Further improvement have been made to make it com-
putationally more stable and faster (Laheld and Cardoso, 1994).

4.2. Sparse Coding

Sparse coding looks at the whole problem from the opposite point of view.
Sparse coding is indifferent to the nature of the data, be it cabbages or
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coding + -

dense, non-
redundant

few channels, low
energy demands

no error correction

dense,
redundant

error correction many channels, high energy
demands, error correction
only over several channels

sparse error correction
within single channel

many channels

Tab. 4.1: Advantages and disadvantages of coding schemes

apples. Sparse coding’s only objective is to answer the question: What
would be an efficient way (for a brain) to encode all this data?

When for example a painting as in Figure 4.1 is projected onto our retina,
the encoding of it is highly redundant: neighboring pixels often share
the same color and most of the background is completely black. If we
look at all the paintings in the world, we will see similar redundancies
in most of them. This redundancy means that, even though every chan-
nel itself carries a lot of information about the picture, i.e. has a high
Shannon entropy (dense coding), the collective information of all channels
is just slightly higher than the information in a single channel. An easy
reduction scheme is PCA, reduction of the channels to a few decorrelated,
dense-coding channels. The information in each channel is similar to the
information in the original channels, but the total information is roughly
the sum of the information in the single channels. On the downside, the
brain represents a very noisy environment, and the redundancy gave us
some kind of error correction. A third encoding method, sparse coding,
combines the advantages. The goal of sparse coding is not to get rid of
the redundancy, but to constrict the redundancy over many channels into
redundancy within one single channel, so that each channel has a built-in
error correction (See Table 4.1).

A first sparse coding algorithm was proposed by Olshausen and Field
(1996), where they are trying to maximize the following cost (the variables
have been adapted to fit the nomenclature of the thesis):

F (X, Y |A) =
∑
i

(xi − Ai · Y )2 + c ·
∑
j

R
(yj
σ

)
. (4.10)
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The first term
∑

i (xi − Ai · Y )2 is a measure of the mean square recon-
struction error of the original stimulus X by a representation Y and a
given decoding matrix A. The second term

∑
j R
(yj
σ

)
with σ2 as the

mean variance of all yj, is the cost of the representation Y , where the ele-
mentwise function R(.) is sparseness-enforcing. They tested the functions
R(y) = −e−y2, log(1 + y2), |y|, which all lead to a qualitatively similar
result. The factor c is the trade-off between reconstruction error and
sparseness.

The learning algorithm used was again a gradient descent algorithm. Al-
ternatingly they optimized the decoding matrix A and the representation
Y . But even after the training is finished, the representation Y of a new
stimulus X has to be optimized by gradient descent.

Note the similarity to the formulation of ICA. If we add a term of Gaussian
white noise1 to the ICA X = A ·S+η, the cost function of sparse coding is
equivalent to a log-likelihood formulation with the distribution of S being
proportional to e−R(.).

4.3. A New Nonsymmetric Sparse Coding Algo-

rithm

The following section is partly reproduced from the publication Blättler and
Hahnloser (2011).

As seen in the previous section, many data-driven coding algorithm al-
ready exist. But all the algorithms presented so far are symmetric. Sym-
metric means that finding an encoding matrix W is equal to finding an
encoding matrix −W , which would just exchange Y with −Y . But if we
look again at the example of Figure 4.1A, there is 1 cabbage, 1 quince, and
0 apples. And we might look at a million more paintings (before artists
started to play with negatives), and we will always find a non-negative
number of cabbages. There are already a number of algorithms trying
to implement this restriction. The probably best known is non-negative
matrix factorization by Lee and Seung (1999). The goal of this method is
to approximate a non-negative stimulus X ≈ A · Y by a product of two

1 Therefore, sparse coding is sometimes called noisy ICA
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non-negative matrices. However, the two major drawbacks of this method
are that no negative features are allowed2 and that the encoding Y has
to be optimized iteratively. A second algorithm was proposed by Hoyer
(2002), called non-negative sparse coding. The cost function is actually
identical to equation 4.10, it just imposes a non-negativity restriction on
Y . But again, the drawback of the algorithm is its inability to encode new
stimuli without iterative optimization. A third algorithm that should be
mentioned here is non-negative ICA by Plumbley (2003). This algorithm
minimizes the Euclidean norm of all negative elements of the encoding Y .
But the algorithm does not care about the exact span of the subspace of
positive values and the encoding W is restricted to rotations.

I therefore shall present a new algorithm that does not suffer the drawbacks
of the algorithms mentioned so far.

The model we use is the generative model of noisy ICA, under the restric-
tion that the hidden causes S are all non-negative and most of the time
equal to zero:

X = A · S + η. (4.11)

The data vectors Xt are of dimensionality N0. But before we feed them
into our algorithm itself, we will whiten them and reduce the dimension-
ality to NP by a standard PCA algorithm (see equations 4.4 and 4.5). In
case of on-line learning we would have to replace the standard PCA by an
on-line version, e.g. Rao and Principe (2002).

We will then project the Data using a square encoding matrix W

Y = W ·XP . (4.12)

The complete projection including the whitening will be called ξ = W ·P .
If ξ · A is the unity matrix, we have

Y t = St + ξ · ηt +K, (4.13)

2 How would you represent shadows without being allowed to subtract something
from the background?
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where K is a constant offset due to the centering in the PCA step. ηt is
N0-dimensional uncorrelated Gaussian white noise with zero mean.

We will now make the following assumptions:

(I) the variance in all channels has been normalized, i.e.
〈(
Ai · St

)2
〉
t

=

1

(II) the noise in all channels is equal, i.e.
〈
ηti

2
〉
t

= σ2
X

(III) each source Si has an equally sparse activity, i.e.
〈
sti 6= 0

〉
t

= na � 1

(IV) each source’s activity is independent of all other sources

(V) each source has the same influence on the signal, i.e.
〈(

Ai · sti
)2
〉
t

=

σ2
Si
· ‖Ai‖22 = k

(VI) the projection matrix A is dense.

From this assumptions we can derive the following

(VII) if the number of sources N is big enough the elements of X will con-
verge towards a Gaussian distribution by the central limit theorem.

(VIII) the influence k is the ratio between source and channels k = N0

N =

σ2
Si
· ‖Ai‖22 =

σ2
Si

‖ξi‖22
.

(IX) the noise variance on Yi is σ2
Yi

=
〈(
ξi · ηt

)2
〉
t

= ‖ξi‖22 · σ2
X .

(X) the SNR on X is SNRX = 1
σ2
X

.

(XI) the SNR on Yi SNRY =
σ2
Si

‖ξi‖22·σ2
X

= N0

N ·σ2
X

is independent of the source

i.

(XII) the total SNR therefore gets enhanced by a factor SNRY

SNRX
= N0

N .

(XIII) if we only consider nonzero entries in the source S the SNR will be
enhanced by a factor N0

N ·na .
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From (XIII) we see that the correct matrix ξ yields an enhancement of
the SNR by the factor of N0

N ·na . So for very sparse sources we can reach

very high SNRs for nonzero entries.3 It is therefore save to assume that
any value yti below a certain threshold θ stems from a source sti = 0.
We therefore introduce two new matrix: Y+ as the matrix suprathreshold
value of Y and Y− as the matrix of subthreshold values:

yti,+ =

{
yti yti > θ

0 else
(4.14)

Y− = Y − Y+. (4.15)

As a third matrix we define the firing rate R as the matrix of the threshold
excess of Y :

rti =

{
yti − θ yti > θ

0 else
(4.16)

4.3.1. Zero-Threshold Algorithm

Given the matrices in the last section we can now formulate our cost
function

F (Y ) =
∑
i,t

f
(
yti
)

(4.17)

with

f
(
yti
)

=
1

2

(
yti,− − y0

)2
+ c · rti, (4.18)

graphically shown in Figure 4.2. This cost function is similar to equation
4.10, if we set the threshold θ = 0, the subthreshold minimum y0 = 0, and
restrict the coding matrix W to rotations. However, we do not restrict W

3 this remains valid if we drop assumptions (I), (II), and (III). It should be an easy
exercise for the experienced reader to proof it.
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just to rotations. If not mentioned otherwise, the restriction on projection
W was that the basis vectors of the projection had to be of length 1.
Mathematically speaking the columns in the left-side inverse J of W are
of length one:

J ·W = I (4.19)

diag(JT · J) = 1 (4.20)

15

10

5

0
0 5-5

Fig. 4.2: Cost
function for a single
unit. The constant
c is set to c = 1 and
the threshold θ =
0 and subthreshold
minimum y0 = 0.

However, we also performed some simulations
where we restricted det(W ) = 1 and some simula-
tion where we restricted W to rotations, W T ·W =
I. But the results were not qualitatively differ-
ent. To ensure the restriction in equation 4.20 we
parametrized the inverse projection J by

jmn =
sinbmn

Mn |cos bmn|
(4.21)

(4.22)

with the normalization

Mn =

√∑
l

tan2 bln. (4.23)

This parametrization was chosen because it showed superior convergence
compared to others. The optimization is now done by gradient descent.4

The gradient −AT is calculated replacing the gradient by the directional
derivative:

trace(−AT · A) = trace

(
∂F (B)

∂B
· A
)

= ∇AF (B) =
∂

∂τ
F (B + τA)

∣∣∣∣
τ=0

(4.24)

4 For det (W ) = 1 the parametrization was W = B ·det
(
B−1/N

)
and for W T ·W =

1 it was W = eB−BT
.
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where we can formulate the cost function

F = trace

(
1

2
Y · Y T

− + c · Y · sign(R)T − θ · sign(R) · sign(R)T
)
. (4.25)

The derivation of the signum function is zero everywhere but at zero.
However, in physics there is no zero, just smaller than measurable. The
last term can therefore be omitted in the derivation:

∂

∂τ
trace

(
1

2
Y · Y T

− + c · Y · sign(R)T
)∣∣∣∣

τ=0

= trace

(
∂W (B + τA)

∂τ

∣∣∣∣
τ=0

·XP · (Y− + c · sign(R))T
)
. (4.26)

The deviation can be further resolved

∂W (B + τA)

∂τ

∣∣∣∣
τ=0

= −W · ∂J(B + τA)

∂τ

∣∣∣∣
τ=0

·W, (4.27)

so that the directional derivative becomes

∂F

∂τ

∣∣∣∣
τ=0

= −trace

(
∂J(B + τA)

∂τ

∣∣∣∣
τ=0

· Z
)

(4.28)

with

Z = Y · (Y− + c · sign(R))T ·W. (4.29)

The derivation of a single element is

∂jmn
∂τ

∣∣∣∣
τ=0

= amn
sign(cos bmn)

cos2 bmn ·Mn
−
∑
l

aln
tan bln · jmn
M3
n · cos2 bln

(4.30)
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If we resolve equation 4.24 we get

amn =
sinbmn

M2
n cos3 bmn

(
znm
jmn
−
∑

l znljln
Mn

)
. (4.31)

The encoding matrix W is calculated according to algorithm 1. At each
step n a random subset of our data is chosen to calculate the local gradient
An. We then search for the optimum τn by estimating a maximal step size
based on the last τn−1 and so loosely circling in on the optimum value.

τn = argmin τF (Bn−1 + τ · An) (4.32)

The randomization of the subset taken at each optimization step makes
it harder to estimate the convergence, but at the same time it overcomes
saddle points and local minima very fast.

Algorithm 1 Learning algorithm

1: Initialize random matrix B0, n = 0
2: repeat
3: n++
4: Calculate W (Bn−1)
5: Chose random subset of the data XP

6: Calculate for the subset Y = W ·XP

7: Calculate An

8: Perform a line search for the optimal step τn

9: Update Bn = Bn−1 + τn · An
10: until Convergence

However, as mentioned above, it is possible to run this algorithm on-line.
The changes would be to use a on-line PCA algorithm and to chose an
appropriate update rule for the training data. However, it is costly as for
each update step the inverse of J has to be calculated.
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4.3.2. Non-Zero Threshold
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Fig. 4.3: Non-zero
threshold cost function
for a single unit. The
constant c is set to
one. the subthreshold
minimum to zero, the
threshold θ is 3, and
the subthreshold mini-
mum y0 is 0. The fac-
tor k takes the values 0
(blue), 0.3 (green), and
1 (red).

With a training threshold θ 6= 0 or a sub-
threshold minimum y0 6= 0, we encounter a
problem: our cost function is no longer a con-
tinuous function. It has a discontinuity at the
threshold in each dimension. Therefore the
gradient descent algorithm will fail. A possi-
ble solution to this problem is a smoothing of
the discontinuity by a sigmoid function Uk (y).
The cost function is therefore changed to

f
(
yti
)

=
1

2
Uk
(
yti
)
·
(
yti − y0

)2

+c
(
1− Uk

(
yti
))
· (yti − θ) (4.33)

with

Uk (y) =
1

2

(
tanh

(
1

k
(θ − y)

)
+ 1

)
. (4.34)

The constant k has to be chosen of the same order as the distance between
neighboring data points in each dimension around the threshold. The
influence of k on the cost function can be seen in Figure 4.3.

If we now use the same algorithm to solve it we can just change the
definition of the matrix Z:

Z = Y ·
(

(Y − y0) ◦ Uk (Y ) +
1

2
(Y − y0)◦2 ◦ Vk (Y )

+c (1− Uk (Y ))− c (Y −Θ) ◦ Vk (Y ))T ·W (4.35)

where ◦ is the elementwise Hadamard multiplication and ◦2 the elemen-
twise Hadamard sqare. We have further the function Vk (y) being the
elementwise derivative of sigmoid function Uk (y)
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Vk (y) =
dUk
dy

= − 1

2k
cosh−2

(
1

k
(θ − y)

)
(4.36)

which both act elementwise. After this redefinition, we can use equation
4.31 to calculate the derivative A and applay the same algorithm.

4.3.3. Overcomplete Representation

Several data-driven learning algorithms have been extended by different
authors to comply with overcomplete basis (Olshausen and Field, 1997;
Lewicki and Sejnowski, 2000; Hyvärinen and Inki, 2002; Delgado et al.,
2003). In the painting of Juan Sànchez Cotàn (Figure 4.1), he painted a
quince, a cabbage, a melon, and a cucumber. But he could have painted
thousands of other vegetables . Or fruits. Or animals. Or humans. One
easily could imagine many more objects for a painting than the dimension-
ality of subspace spanned by all paintings. If we assume that the subspace
spanned by our stimuli is of lower dimension than the number of possible
hidden sources, we should work with overcomplete representations.

In the section 4.3.1 we assumed that the dimensions NP and N are the
same, i.e. the matrix W is quadratic. However, by definition this re-
striction is not needed, we only have to restrict J · W = I. But for a
non-quadratic NxNP matrix W with N > NP there is an infinite number
of left-side inverse J and vice versa. Which one to chose? The solution is
to let the algorithm also. We define two additional matrices J0 and W0,
as folows:

[
J
J0

]
=
[
W W0

]−1
. (4.37)

Actually we are not interested in W0 at all. What we need is J0 as it defines
the orthogonal complement to W and therefore W itself for a given J . The
parameter matrix B now is a square matrix of size NxN that parametrizes

the matrix

[
J
J0

]
by



4.3 A New Nonsymmetric Sparse Coding Algorithm 67

jmn =
sinbmn

Mn |cos bmn|
(4.38)

j0mn =
sinb(m+NP )n

Mn

∣∣cos b(m+NP )n

∣∣ (4.39)

with the same normalization as equation 4.23,

Mn =

√∑
l

tan2 bln. (4.40)

When calculating the derivative (equation 4.24) we can define the matrix
Z as in equations 4.29 (for θ = 0 and y0 = 0) or 4.35 (else). The derivative
finally gets

amn =

 sinbmn

M2
n cos3 bmn

(
znm
jmn
−
∑

l znljln
Mn

)
|m ≤ Np

sinbmn

M2
n cos3 bmn

znm
jmn

|else.
(4.41)

4.3.4. Low-Density Receptive Fields

To master the density of STRFs (sharply tuned versus broadly tuned neu-
rons) we run a few simulations with an additional term in the cost function,
corresponding to a linear cost on absolute synaptic weights,

W = arg min W ′
∑
i,t

f(yti) + cs

√
Nsb√

N0 ‖P‖F
‖ξ‖1 , (4.42)

where sb denotes the batch size (number of cochlear input samples per
weight update), ‖.‖F the elementwise Frobenius-norm, and ‖.‖1 an ele-
mentwise 1-norm and cs is the relative weight of the new term.

To implement the low-density RF we have to adjust the matrix Z in equa-
tion 4.29 (or equation 4.35 accordingly) to
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Z =

(
Y · (Y− + c · sign(R))T + cs

√
Nsb√

N0 ‖P‖F
ξ · sign(ξ)T

)
·W. (4.43)

It is possible to implement further optimization targets into the cost func-
tion without great efforts. Possible targets would be to minimize correla-
tions between different neurons for a certain time shift, as the algorithm
right now does not care about temporal continuity and only cares about
single frames. Each additive cost adds one term to the matrix Z and can
be calculated with ease as in the aforementioned examples.

4.3.5. Inclusion of Temporal Features

What we left out until now are temporal features, any equation presented
so far works on the input matrix X where single data points Xt are rep-
resented as columns and any permutation of columns will lead to exactly
the same result, except that the columns of Y are equally permuted. But
natural stimuli are not a sequence of static stimuli that are randomly
switched in zero time. One possible approach of taking into account tem-
poral statistics is by replacing data points Xt with sliding windows Xt:t+τ

of length τ . If we whiten our data first we then get

Xt
p = P ·Xt−τ :t (4.44)

and have reduced the window to a single time step again. However, be
aware that even though the windows might overlap, the algorithm will
treat them as no more related than any two windows in the training set.

4.3.6. Reconstruction Error and Decoding

The first term of the cost function in Equation 4.17 imposes a linear cost
on suprathreshold synaptic currents. Because suprathreshold synaptic
currents are equivalent to instantaneous firing rates at zero noise, the
first term enforces firing sparseness across the population (for the training
threshold). The second term imposes a quadratic cost on subthreshold
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synaptic currents, which is equivalent to minimizing an error bound on
decoded cochlear inputs. To see this, consider the following estimate X̂t

p

of whitened cochlear inputs Xt
p = PXt−τ :t from suprathreshold synaptic

currents at time t:
X̂t
p = J

(
Y t

+ + Y t
E−
)
, (4.45)

where Y t
E− is the vector with the expected subthreshold currents: yti,E− =

yE− for yti < θ and yti,E− = 0 otherwise.

The decoding error associated with the decoding X̂t
p is given by the mean

square Euclidean norm between X̂t
p and Xt

p. This error is related to the
distribution of subthreshold currents as follows:

∑
t

∥∥∥Xt
p − X̂t

p

∥∥∥2

2
=
∑
t

∥∥JY t − J
(
Y t

+ + Y t
E−
)∥∥2

2

=
∑
t

(
Y t
− − Y t

E−
)T
JTJ

(
Y t
− − Y t

E−
)

=
∑
t

(
Y t
− − Y t

E−
)T

(I + C)
(
Y t
− − Y t

E−
)

'
∑
t

(
Y t
− − Y t

E−
)T (

Y t
− − Y t

E−
)

=
∑
yti<θ

(
yti − yE−

)2
(4.46)

where in the first line we have used that Xt
p = PXt−τ :t = JY t, and in the

third line I represents the identity matrix and C a matrix with zeros on the
diagonal. The approximation in the third line is based on the assumption
of equally distributed and mutually independent subthreshold currents:
p(yi, yk) = p(yi)p(yk). Note that the approximation in Equation 4.46 is
exact for rotations (JTJ = I), whereas for the constraint diag(JTJ) = 1,
we found the approximation to be within 4% of the reconstruction error
for θ = 0, and to be even closer for higher θ.

The key insight is that for the training threshold θ, the approximated
reconstruction error is proportional to the subthreshold term of our cost
function if we choose y0 = yE− in Equation 4.17. Hence, by minimizing
the subthreshold term in our cost function, we minimize the approxima-
tion of the decoding error. The final term in Equation 4.46 shows that
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the reconstruction error is small when the subthreshold currents are rare
(p (y < θ) is small) and their variance is small (

〈
(y − yE−)2

〉
y<θ

is small).

Note that the decoding scheme defined in Equation 4.45 may not be glob-
ally optimal, but it is motivated by our assumption that only suprathresh-
old events carry meaningful information. Also, a benefit of this decoding
scheme is its asymptotic robustness (for a threshold of minus infinity the
decoding error vanishes).

Our algorithm minimizes an approximation of the reconstruction error,
but not the reconstruction error itself (Equation 4.46). Exploratively, we
have adapted the algorithm to directly minimize the reconstruction error
(defined in Equation 4.46) for a given threshold θ > 0. The resulting
reconstruction error for BOS at the given threshold was only marginally
better than with our sparse-coding algorithm. Synaptic current distribu-
tions were nearly bimodal with a first peak at zero and a second peak
slightly above θ; interestingly, reconstructions became worse than in Fig-
ure 5.10E when performed using a different threshold from the one used
during learning.

4.3.6.1. Reconstructed Spectrograms

From the decoded whitened inputs X̂t
p, the spectrograms (Figure 5.10) are

reconstructed using the pseudoinverse P−1 = EΛ1/2. The element t of the
reconstructed spectrogram was defined by

Xt
rec = EΛ1/2X̂t

p. (4.47)

From these elements, the fully reconstructed spectrograms are computed
by averaging over all overlapping regions in the sequence Xt

rec, X
t+1
rec , . . . ,

i.e. the overlapping time slices.

It is also possible to reconstruct the spectrogram probabilisticly from the
firing rates R:

E(X|R) =

∫
X · p(X|R)dX =

∫
X · p(X)

∏
t
p(X|Rt)
p(X) dX∫

p(X)
∏
t
p(X|Rt)
p(X) dX

(4.48)
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given that p(R|X) =
∏
t p(R

t|X), which is fulfilled by p(Rt|X) being delta
peaks in the noiseless case and independent Gaussian distributions with
variance k2 in the noisy case, thresholded at θ. We can further make
the approximation that the posteriors p(X|Rt) are much sharper defined

than the prior p(X): p(X)
∏
t
p(X|Rt)
p(X) ≈ α ·

∏
t p(X

t−τ :t|Rt), where α is a

proportionality factor. The pointwise approximation then becomes:

E(xti|R) =

∫
xti
∏τ
u=0 p(x

t
i|Rt+u)dxti∫ ∏τ

u=0 p(x
t
i|Rt+u)dxti

(4.49)

In the case of a threshold θ → −∞ and no noise, the expected value
E(xti|Rt+u) is (ξ−1)ui · Y t+u with the variance of projections onto the

orthogonal complement of the PCA-space σ
t|u
i

2
=
(
C − ET · Λ · E

)uu
ii

,
under the assumption that projections onto PCA-space and projections
onto its orthogonal complement are independent. If we have imper-
fect information, i.e. a finite threshold and noise, the expected value
becomes (ξ−1)ui ·

(
Y t+u

+ + Y t+u
E−
)

(see section 4.3.6) and the variance
is augmented by variance of the unknown elements of Y t+u and the

noise, σ
t|u
i

2
=
(
C − ET · Λ · E

)uu
ii

+ (ξ−1)ui · Σ(Y t+u|Rt+u) · (ξ−1)ui
T

, with

Σ(Y t+u|Rt+u) = k2 · I + Σt+u
− being the covariance matrix of the thresh-

olded synaptic currents given the firing rate, with Σt+u
− the covariance

matrix of the subthreshold currents. The expected value of xti under this
assumptions becomes

E(xti|R) =

∑τ
u=0

E(xti|Rt+u)

σ
t|u
i

2∑τ
u=0

1

σ
t|u
i

2

. (4.50)

Compared to the averaging of the windows proposed above, we end up
with a weighted averaging, weighted by the inverse of the variance. How-
ever, reconstructions based on this weighted averaging are only marginally
better than when simply averaged.

Now that we have written down the equations and the algorithm, we
shall discuss in the next chapter the implementation and the characteristic
behavior when applying the method to natural data.
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Chapter 5

Sensory Modeling Using
Nonsymmetric Sparse Coding

Il y a aussi deux sortes de vérités, celles de Raisonnement
et celle de Fait. Les vérités de Raisonnement sont
nécessaires et leur opposé est impossible, et celles de Fait
sont contingentes et leur opposé est possible.

Gottfried Wilhelm Leibniz, La monadologie

5.1. An Overview over Sensory Modeling

It is an ongoing discussion on how to filter for relevance and in what code
to present the data to later stages. One of the earliest proposals was made
by James (1890) who suggested the existence of a “pontifical cell”. In his
model all neurons would have to report (directly or indirectly) to this one
cell, to which also our consciousness is bound to. Information about the
whole world would be needed to fit in a single sequential code. A new idea
was introduced by Barlow (1972) replacing the one “pontifical cell” by a
number of “cardinal cells”. No longer should one single neuron encode all
information, but a set of neurons should each encode for a specific percept:

Among the many cardinals only a few speak at once; each makes
a complicated statement, but not, of course, as complicated as
that of the pontif if he were to express the whole of perception
in one utterance.
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As an example Barlow mentions the infamous “grandmother cell”, a cell
that response to all views of a grandmother’s face. But he does not think of
this cell responding solely, but simultaneously with other “cardinal cells”
that respond to position, surrounding etc. The number of these “cardinal
cells” is estimated very high:

[The collage of these cardinals] ...must include a substantial frac-
tion of the 1010 cells of the human brain.

The new idea was to have a set of neurons each one representing a cause
underlying a sensory stimulation, very similar to how someone would de-
scribe a situation, and not just single pixels or elements. But how should
the sensory system be built to lead to such sensations?

Todays models are still far away from answering this complex question.
They rather try to solve small pieces of this puzzling question. The design
of a model can coarsely be attributed to one of two groups: bottom-up
design and top-down design. The biologically inspired bottom-up design
starts at the very ground level. Depending on how and what to model,
this is often a single neuron (such as Hodgkin and Huxley, 1952) or even
single axons and dendrites (Bressloff, 1995). These models try to explain
the biophysics of a system as precise as necessary and, by aggregating
them to larger systems, search for the tasks these systems can perform.

The second approach, top-down, is rather mathematically inspired. The
starting point for such models is the functionality of the system. Its creator
defines the tasks/output of the system and a learning rule for the system,
that guarantees him success. Then we look into the system analyzing the
behavior of subunits (e.g. neurons) and compare it to the behavior of its
biological counterpart.

Hubel and Wiesel (1959) were the first to describe the functionality of sen-
sory neurons by receptive fields, focusing on simple cells in the primary
visual cortex of cats. One of the first approaches to model these receptive
fields was by Bossomaier and Snyder (1986). They were philosophizing
about how the brain could best decorrelate a picture in order to reduce re-
dundancy. In the case of infinite size pictures with shift-invariant statistics,
PCA (the optimal decorrelator) is equivalent to the Fourier transforma-
tion. However, it turns out that real pictures do not follow exactly these
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statistics and a better decorrelation can be obtained by localized Fourier
transformation, in their case by Gabor functions, leading to the maxi-
mal space-frequency resolution. This model of simple cells in the primary
visual cortex as Gabor filters holds still today as a good approximation.

In 1992 Hancock et al. (1992) really calculated the first few principal com-
ponents of a set of natural 64x64 grayscale pixel images. The resulting
receptive fields were not exactly Gabor filters, they could better be de-
scribed as (zeroth to n-th order) derivatives of two-dimensional Gaussians.
As they discuss in the conclusions, PCA may not exactly be what the vi-
sual cortex does.

The same year Atick (1992) published a very interesting review paper,
where he proposed neural coding strategies based on information theory.
Instead of decorrelation he introduced a maximization of the code entropy,
ideally with independent symbols. He applies this idea on the example of
retinal output. However, he did not use real pictures, but made statistical
assumptions about them.

Five years later Bell and Sejnowski (1997) took up the idea of maximizing
the entropy for sensory modeling. They applied their infomax algorithm
(Bell and Sejnowski, 1995) to real images and found that most of their
units were edge detectors at different positions and orientations, much
like simple cells in primary visual cortex of cats and monkeys.

In parallel there was the work by Olshausen and Field (1996). Their ap-
proach was a different one. Neurons should maximize the entropy, they
should maximize the sparseness of their output while maximizing the in-
formation about the original stimulus. The outcome was very similar to
Bell and Sejnowski (1997), which is not so surprising, as the two algo-
rithms are closely related1. A direct advantage of this approach is the
free number of dimensions. In contrast to many ICA algorithms that need
a square projection matrix, their number of outputs has no limitations,
which makes it preferable for neural modeling. For example primary visual
cortex has much more neurons than its input LGN and its coding can be
modeled as an overcomplete representation of the input (Olshausen and
Field, 1997).

1 see chapter 4.2
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However, sensory processing is not a one-layer story, but includes many,
complexly wired areas2. Hyvarinen and Hoyer (2001) created a two-layer
model with two layers of identical size. The cells in the layers were to-
pographically arranged as 25x25 torus, and the connections between layer
one and two were fixed by layer-two cells getting input from the 25 nearest
layer-one cells. Layer-one cells performed a rotation on the whitened input
and rectified their output. The learning algorithm optimized this rotation
in order to maximize the output sparseness of layer-two cells. The results
were topographically arranged layer-one cells. Cells tuned to similar orien-
tation sat next to each other. Layer-two cells thus were phase insensitive,
very much like the complex cells found in V1.

A new interesting approach was made by Smith and Lewicki (2006). Us-
ing a matching pursuit algorithm they decomposed waveforms of natural
sounds and speech. The resulting kernels after training highly resembled
the transfer function obtained from cat auditory nerve fibers. However, it
remains an open question whether this method would also be successful
in predicting behavior of cortical neurons.

5.2. The Model

The following two section is mainly reproduced from the publication
Blättler and Hahnloser (2011).

We model the auditory pathway of the zebra finch as a feedforward net-
work that receives auditory input from the cochlea in the form of spec-
tral temporal sound patterns3. These patterns are multiplied by synaptic
weights and summed, to result in the total synaptic current impinging
onto neurons. Mathematically, the set of synaptic weights onto a neuron
represent its spectral temporal receptive field (STRF). We devised an al-
gorithm that optimizes synaptic weights for their propensity to decorrelate
(whiten) and sparsify cochlear inputs: First, we whitened cochlear inputs
using a projection matrix P (principal component analysis, PCA), and
then we sparseness-transformed the inputs using a matrix W that min-
imizes an asymmetric cost imposed on total synaptic currents, equation

2 see chapter 3 for an example
3 The cochlear input is approximated by a log-power spectrogram. It is a very

rough, however useful approximation (Gill et al., 2006)



5.2 The Model 77

Σ ΣΣΣ ...

=

R
t

R
t

N

r1

t
rN

t
r2

t
...

Fig. 5.1: Schematics of the model. At time t, the auditory input to the network
is a 50-ms window Xt−τ :t of the sound spectrogram. This input is multiplied by
synaptic weights ξ = WP to result in total synaptic currents Y t = (yt1, ..., y

t
N )

onto N neurons. P stands for whitening and dimensionality reduction (principal
component analysis), and W stands for a sparseness transformation. Neural
firing rates Rt = (rt1, ..., r

t
N ) are given by rectified synaptic currents.

4.17 and Figure 4.2. In this cost, hyperpolarizing synaptic currents are
punished quadratically, whereas depolarizing currents are punished lin-
early. Intuitively, to minimize the cost, weak and frequent cochlear inputs
must be hyperpolarizing (such that the quadratic cost is smaller), whereas
strong and rare inputs must be depolarizing (such that the linear cost is
smaller). We defined firing rates by simple rectification of total synap-
tic currents at variable firing thresholds. The linear cost of depolarizing
currents is in effect a cost on the average population firing rate (at the
learning threshold); and, the quadratic cost of hyperpolarizing currents is
a cost on a reconstruction error associated with simple decoding of the
original cochlear inputs from firing rates. In simple words, the algorithm
tries to maximally sparsify population responses without discarding any
relevant sensory information. We minimized the cost function over train-
ing data consisting mostly of renditions of a particular zebra finch song
(BOS) and a few CONs. After training, we evaluated the network for a
wide range of firing thresholds.

Most of the data we are going to present in this chapter is produced by a
training set of 34 files containing BOS and 12 files with containing CON,
produced by two different birds, 6 files each bird or a training set of 34
BOS-files (different bird) and 44 CON-files of 22 birds. The spectrograms
produced from this files had a temporal resolution of 0.7 ms and a spectral
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resolution of 86 Hz. The sliding windows used had a temporal span of τ =
50 ms (64 samples) and a spectral span from 0 to 11 kHz (128 frequency
bands), leading to a total dimensionality of N0 = 8192 of the input space.
If nothing else is mentioned the threshold θ, the subthreshold minimum
y0 as well as the density weight cs where all set to zero, and sparseness
factor c was set to one.

5.3. Results

5.3.1. Spectral-Temporal Receptive Fields and Ensemble
Modulation Transfer Functions

In the contemporary literature we find a variety of publications describing
measured STRFs in the zebra finch’s areas DLM, Ov, Field L, and CM,
mainly by the groups of Theunissen and Woolley (Theunissen et al., 2000;
Sen et al., 2001; Theunissen et al., 2001; Hsu et al., 2004; Theunissen et al.,
2004; Woolley et al., 2005; Gill et al., 2006; Woolley et al., 2006; Nagel
and Doupe, 2008; Woolley et al., 2009; Amin et al., 2010). After train-
ing, our model neurons displayed a large diversity of STRFs. Typically,
STRFs were patchy and had multiple adjacent inhibitory and excitatory
spectral/temporal subfields. In many neurons, STRFs were regularly ar-
ranged into horizontal or vertical stripes (Figure 5.2A), similar to receptive
fields in field-L neurons that encode elementary spectro-temporal sound
features such as sound onsets or a particular sound pitch.

Model STRFs had excitatory and inhibitory subfields that together cov-
ered the entire spectro-temporal window of the STRF. Typically STRFs in
field L are of considerably lower density in that they mostly possess only
two or three subfields instead of more than six. We therefore explored
whether STRFs in our model would be of lower density when we added
a third term to the cost function, a term corresponding to a linear cost
on absolute synaptic weights. We found indeed low-density STRFs if the
parameter cs weighing this third term exceeded roughly 0.1, Figure 5.2B.
Density of STRFs could be controlled independently of the sparseness of
model responses.

We explored the correspondence between STRFs and the stimulus fea-
tures to which neurons responded most. In most cells, presentation of
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A B

Fig. 5.2: Spectral temporal receptive fields. (A) Spectral temporal receptive
fields (STRFs) of N = 100 neurons, arranged by nearest-neighbor similarity
(circular boundary conditions). Neurons tend to be either temporally tuned
(vertical stripes, top right), spectrally tuned (horizontal stripes, middle rows),
or display more complex spectro-temporal patterns. Spectral resolution is 172
Hz, offset between subsequent cochlear inputs is 1.5 ms. (B) STRFs obtained
with a linear cost on synaptic weight magnitudes. The linear cost forces many
synaptic weights to be close to zero (green), leading to low-density STRFs most
of which contain a smaller number of excitatory and inhibitory subfields than
in A. Interestingly, excitatory and inhibitory subfields tend to be close to each
other and aligned horizontally or vertically, similar to observations in field L
neurons. The 100 presented STRFs were randomly chosen out of the total 800.
cs = 0.2.

different BOS versions elicited reliable responses to specific song notes,
Figure 5.3A-C. For example, the total synaptic current in neuron 10 with
a checkerboard-like STRF reliably peaked after the down sweep of the in-
troductory note and to a lesser extent it also peaked at the offsets of some
other syllables. Neuron 23 with a narrow and slanted STRF responded
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most strongly to the down-sweep of the harmonic stack in Syllable A1. The
STRF of Neuron 88 had sharp vertical subfields, the synaptic current to
this neuron peaked during rapid increases of sound intensity such as during
the onsets of Syllables C and D. Another neuron with a vertically domi-
nated STRF (Neuron 131) responded a few milliseconds after the onsets
of Syllables E and F. This neuron was able to respond to different syllable
onsets than Neuron 88 by virtue of its sensitivity to a low-frequency tone
immediately followed by a high-frequency tone, which is a common char-
acteristic of both Syllables E and F. Very particular was Neuron 106. Its
receptive field and that of several other neurons were centered on a single
frequency band close to 7 kHz. It turned out that this cell responded to
electrical noise by which our recordings were affected; during BOS pre-
sentation, the total synaptic current to this cell was small and increased
mainly during syllable gaps where no signal except the noise was present.
The structure of the sparsely checkered STRF of Neuron 121 was particu-
larly well adapted to Syllable E, the neuron responded almost exclusively
during the transition between sub-Syllables E1 and E2. Finally, Neurons
55 and 147 did not show either robust or strong responses to BOS; a more
thorough analysis revealed that they responded strongly to a CON in the
training set. When we ordered all neurons by the time at which their
synaptic currents peaked in response to a particular version of BOS, we
found that the resulting stack plot exhibited a staircase-like shape: peak
currents were widely distributed across cells with many more peaks seen
during syllables than during syllable gaps, Figure 5.3D.

Some neurons were not just tuned to a particular syllable within the mo-
tif, but had even more specific tuning to particular subsets of that sylla-
ble. Finches often produce harmonic stack syllables and can subtly vary
the pitch of these syllables in a well-controlled and goal-directed man-
ner (Tumer and Brainard, 2007; Andalman and Fee, 2009). When we
trained a network of 196 neurons on the songs of a bird produced dur-
ing an entire day, we found that synaptic currents of two neurons peaked
during a harmonic-stack syllable produced by that bird (neurons with
such harmonic-stack receptive fields have been illustrated in Amin et al.
(2010)). Interestingly, for any given stack syllable, the synaptic current in
only one of the neurons peaked, but not in both, Figure 5.4. The two neu-
rons divided the representation of that syllable between each other, one
represented the high-pitch version of the stack, the other the low-pitch
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Fig. 5.3: Receptive fields and neurogram. (A) Power spectrogram of a bird’s
own song (BOS). (B) STRFs ξi of 8 representative neurons (i = 10, 23, 55, 88,
106, 121, 131, 147). The horizontal alignment of STRFs with the spectrogram in
A is such that the trailing edges of the STRFs correspond to the respective peak
times of synaptic currents. The temporal axis of the STRFs is inverted for better
comparison with the BOS spectrogram. (C) Synaptic currents of representative
neurons in B in response to 10 different versions of BOS, vertically aligned to A.
(D) Neurogram of synaptic currents in response to the BOS in A. The N = 160
neurons are sorted according to the peak times of their synaptic currents. Fewer
neurons display synaptic current peaks during syllable gaps (blue arrows) than
during syllables.

versions, Figure 5.4E. Hence, our algorithm is able to ’allocate’ more than
a single neuron to a song feature, depending on the extent of its variability.

STRFs are optimal models of the linear part of neural responses. Can we
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Figure 5.4: Neurons encode behav-
ioral variability, for example song pitch.
(A) Two receptive fields formed by
training a network on all songs produced
by a bird on a single day. (B) Spec-
trograms of a song syllable containing
a harmonic stack. The left version has
median pitch 1024 Hz, the right ver-
sion 1138 Hz. (C) Stack plot of synap-
tic currents in the two neurons elicited
by 813 syllable renditions. The stack
plots have been sorted identically to re-
veal that for a given syllable rendition
either the left or right neuron exhibits a
peak in synaptic current, but not both.
Peaks in synaptic currents are computed
in intervals indicated by red bars on the
bottom. (D) Scatter plot of peak synap-
tic currents in the two neurons. The
distribution is sparse (’L’-shaped). (E)
Median synaptic current in same inter-
vals versus median song pitch of the har-
monic stack. The two neurons are detec-
tors of low and high pitch versions of the
stack, respectively. Red and blue lines
are linear regressions (Neuron 1: R2 =
0.68, p < 10−170, Neuron 2: R2 = 0.69,
p < 10−185), N = 196, y0 = 0.
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recover the STRFs found by our algorithm in simulated neural responses
which contain a threshold nonlinearity? To this end, we estimated STRFs
from nonlinear responses to birdsong stimuli for a range of firing thresholds
θ. We estimated STRFs using reverse correlation (equation 2.6). Mostly,
we found strong resemblance between estimated and actual STRFs, Fig-
ure 5.5. Strong resemblance was seen in all cases in which the correlation
coefficient cc between estimated and actual responses was above 0.1, i.e. in
cases in which the linear model was reasonably good. Moreover, estimated
STRFs did not change much with increasing firing threshold θ, except
that with increasing θ the STRFs had a small tendency to extend over
larger time-frequency regions (Figure 5.5B) than the original low-density
STRFs (Figure 5.5A). We found similarly satisfying results when estimat-
ing high-density STRFs (not shown). Hence, estimated STRFs were quite
insensitive to the nonlinearity and to changes in firing threshold.

Actual STRF ξi

θ=0

θ=2

θ=4

θ=6

θ=8

E
s
ti
m

a
te

d
 S

T
R

F

A

B

Fig. 5.5: Actual STRFs and STRFs estimated using reverse correlation. (A)
A selection of twelve STRFs ξi obtained after convergence of the algorithm
(N = 800). (B) Estimated STRFs (reverse correlation) based on the predicted
firing rates rti. Shown are only estimated STRFs for neurons associated with a
correlation coefficient cc between predicted and actual firing rates of cc > 0.1.
µ = 1. cs = 0.2.

An interesting feature of a sensory system as a total is its eMTF (see
section 2.2.4). This measure describes the modulations of the stimulus
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Fig. 5.6: Ensemble transfer modulation function and modulation amplifica-
tion. (A) Example of an eMTF gained from a simulation of 400 neurons. The
amplitude is color coded and in arbitrary units. The main energy lies between
-80 Hz and +80 Hz with a small gap around 0 Hz temporal modulation and
up to 2 cycles/kHz spectral modulation. Between 2 and 3 cycles/kHz a lot of
energy is around 0 Hz temporal modulation. (B) Example of the amplifica-
tion of eigendimensions of the birdsong. (blue, left scale) Due to whitening the
different eigendimensions get amplified by the inverse square root of the cor-
responding eigenvalue (equation 4.4. (red, right scale) The sparsifying matrix
W is not restricted to rotations and each eigendimension is further amplified.
Eigendimensions with high eigenvalue thereby are amplified, while eigendimen-
sions with low eigenvalue are slightly suppressed. (green, left scale) The total
amplification due to PCA and sparsification. (C) Examples of eigenvectors.
The eigenvectors resemble Fourier components. The first eigenvalue is similar
to the zero-component (on-off), with the color-coded amplitude displaying the
variance of the pixels. The second eigenvectors resembles the zero-one (spectral-
temporal) component. In contrast, the 399th and 400th eigenvectors show high
spectral and temporal modulations.
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mostly encoded by the system as a total, independent of the absolute
temporal or spectral position. Woolley et al. (2005) found similar eMTFs
for MLd, field L and CM: all of them had their main power between −60
Hz and +60 Hz for the temporal modulation, with a clear gap between
−5 Hz and +5 Hz, slightly more pronounced upstream. The temporal
modulation was very limited for MLd and CM and went only up to roughly
0.2 cycles/kHz, while for field L it goes up to roughly 1 cycle/kHz.

The eMTF estimations gained from our models (Figure 5.6A) are very
similar: the temporal modulation is slightly wider from −80 Hz to +80
Hz, but shares the similar gap around zero. One difference is the spectral
span up to 2 cycles/kHz. But the main difference is a purely spectral mod-
ulation (around 0 Hz temporal modulation) between 2 and 3 cycles/kHz
which is unseen in experimental literature.

A possible explanation would be insufficient data for the estimation of
STRFs in the experiments. As explained in section 2.2.2, overfitting is a
serious problem in the estimation processes. The methods used to avoid
it smooth the STRFs and thereby selectively remove high modulation
frequencies. When this is done using a jackknife filtering will be more
sever when data is noisy and/or little. This is partly supported by the fact
that the field L shows higher spectral modulations as the other nuclei4, in
correspondence to their respective firing rates and therefor the available
data.

The question however remains how the model ends up with such eMTF.
If we assume that the stimuli are scale (in time and frequency) invariant
than the PCA step of the algorithm would be identical to the Fourier
transform. But because we multiply it with the inverse of the squarer
root of the eigenvalues, we would get an eMTF of the whitening filters
that grows from the origin to the boarder. And as we reduce the dimen-
sionality, there would be a hard cut at some value and everything further
from the origin would be zero. And under any rotation in the filter space
does not change the eMTF. Now are the stimuli not scale invariant, but
even so eigenvectors with high eigenvalues tend to represent very low fre-
quency modulations while low eigenvalue eigenvectors tend to be more
complex (Figure 5.6C. The interesting part is that the sparsening matrix

4 How should high modulation frequency components arrive and be represented in
field L when they where not present in the downstream nucleus MLd
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W is not restricted to rotations. So the total amplitude with which an
eigendimension is encoded can be changed by sparsification. This change
is represented by the square root of the diagonal of the matrix W TW , de-
picted in Figure 5.6B. Low-frequency components get amplified (maximum
amplification around the 10th eigenvector) and the high-frequency com-
ponents get suppressed, or in total less amplified than by whitening alone.
This suppression/amplification is in practice not unlimited. However in
the overcomplete case, where this limitation is looser, the qualitative form
of the red curve does not change.

5.3.2. Synaptic Currents and Firing Rates

The distribution of total synaptic currents over all neurons and over all
training stimuli was highly asymmetric and contained many positive but
few negative outliers, Figure 5.7A. The distribution of BOS-evoked cur-
rents could be reasonably well approximated by a unit Gaussian on the
negative side and a long-tail exponential on the positive side. This com-
bined Gaussian-exponential behavior follows from the fact that minimiza-
tion of the quadratic-linear cost function is equivalent to locally maxi-
mizing the log-likelihood of a Gaussian model density below the threshold
and of an exponential model density above the threshold, under the global
restriction of zero mean and fixed variance. Interestingly, large synaptic
currents were mostly elicited by the BOS rather than by other stimuli, il-
lustrating that neurons were best tuned to the features of the most promi-
nent stimulus in the training set, which was the BOS. The same finding
was true for low-density STRFs (when cs > 0.1 instead of zero): BOS-
elicited currents exhibited a heavier positive tail than currents elicited by
CON and REV (Figure 5.7B). Hence, model responses were robustly tuned
for the BOS.

We also explored the influence of other model parameters such as y0, which
sets the location of minimal quadratic cost. When we changed y0 to
nonzero values different from the firing threshold θ during training, we
found that BOS tuning of synaptic currents was qualitatively unchanged.
The only effect of changing y0 was to slightly increase the distribution
of synaptic currents around y0 (where cost is minimal) and to slightly
decrease it around θ (not shown).
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Fig. 5.7: Probability density of total synaptic currents. (A) The probability
density of total synaptic currents y averaged over all neurons has a heavy tail
on the positive side. Shown are the densities for BOS (blue), CON (green), and
REV (black). Near zero synaptic currents, the curves are approximatively unit
Gaussian (red), though their excessive peaks are slightly shifted to the negative
side (inset, arrow). The curves cross each other such that large positive synaptic
currents are preferentially elicited by the BOS and small positive currents by
REV and CON. N = 400, y0 = yE−. (B) The distributions of synaptic currents
for sparse STRFs (Figure 5.2B) are qualitatively similar to (A). The only no-
ticeable difference is that the distribution for REV is closer to BOS, reflecting
a lower selectivity for temporal order. N = 400, y0 = yE−, cs = 0.2.

5.3.2.1. Distribution of Firing Rates

We computed firing rates in model neurons by thresholding total synap-
tic currents. A recent analysis of sparsely firing cells in primary audi-
tory cortex of unanesthetized rats has revealed that both background
and stimulus-evoked firing rates are well fit by log-normal distributions
(Hromdka et al., 2008). We speculated that log-normal firing may be a
corollary of efficient coding that could be reproduced in simulations. We
inspected the distributions of firing rates across all neurons for all BOS and
CON stimuli. Indeed, we found that the density of firing rates was best
fit by a log-normal distribution, which was especially true for low firing
thresholds, Figure 5.8. Note that recently published firing rate distribu-
tions of field L neurons in zebra finch were fit by Gamma distributions
(Woolley et al., 2010b). However, the published data suggests that a fit
with a log-normal distribution should be equally good.
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Fig. 5.8: Probability densities of mean firing rates. Mean firing rates in re-
sponse to (A) a BOS stimulus and (B) a CON stimulus. For each cell we
computed the mean firing rate to one stimulus trial. Our simulation data (blue
asterisks) are better fit by log-normal densities (red) than by exponential den-
sities (black). Firing rates are plotted in arbitrary units. Fit parameters for
log-normal densities were determined by the mean and variance of logarithmic
firing rates, and for exponential densities they were determined by the mean
firing rates. Thresholds varied from θ = 0 to θ = 8. Noise amplitude k = 1,
N = 400.

5.3.2.2. Independence of Neural Responses

Training the network increased the independence of neural responses. If re-
sponses were perfectly independent among neurons, the size distribution of
coactive neurons would be binomial (the size distribution is the probability
that a given number of neurons fire synchronously). The sole parameter of
this binomial model is the single-neuron firing density that we estimated
in terms of the fraction of suprathreshold events observed in the entire
neuron population and for all training stimuli. In comparison to this bi-
nomial model, the observed size distribution elicited by whitened cochlear
inputs was substantially wider, illustrating strong firing dependencies. The
sparseness transformation significantly narrowed the observed size distri-
bution towards the binomial case, Figure 5.9A. This increase of indepen-
dence (decrease in Kullback-Leibler divergence to the binomial model) was
true for both high and low firing densities, and true for nearly all firing
thresholds tested, Figure 5.9B, revealing that the sparseness transforma-
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Fig. 5.9: Sparsification reduces firing dependences. (A) The sparseness trans-
formation renders the size distribution of coactive neuron groups (whiten-
ing+sparseness) closer to binomial. The probability p of the binomial distri-
bution (that a neuron is active per unit time) was estimated in terms of the
firing density (the fraction of suprathreshold events over all neurons and train-
ing stimuli). Firing densities p were nearly identical for whitening and whiten-
ing+sparseness when θ = 2 (θ = 0 and y0 = yE− during learning). (B) The
Kullback-Leibler divergence between size distributions is smaller when compar-
ing the whitening+sparseness model to the binomial model than when compar-
ing the whitening model to the binomial model, for nearly all firing densities
tested. N = 400.

tion is a robust mechanism to increase independence of neural responses.
Qualitatively, this behavior of the network to render responses more in-
dependent applied to all firing thresholds used during training (we tested
thresholds up to θ = 5).

5.3.3. What Has Been Encoded

Our network allowed us to decode firing rates and reconstruct the spectro-
temporal sound patterns that elicited them, using the pseudo-inverse of the
sparseness transformation W (see equation 4.45). We evaluated the recon-
structions for various firing thresholds (after training at a fixed threshold
of zero), Figure 5.10A-C. For a threshold of zero, neurons produced dense
firing patterns in response to BOS, with roughly 50 percent of neurons
active at any time, Figure 5.10D. The percent active neurons decreased
from 20% for θ = 1, to 1-2% for θ = 3, and down to 0.4% for θ = 5.
At thresholds higher than roughly three, reconstruction errors associated
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with non-BOS stimuli were often due to missed syllables because none of
the neurons fired in response to these syllables.

In all cases, reconstruction errors increased with increasing firing threshold
in a monotonic manner, Figure 5.10E. For a given threshold, reconstruc-
tions from sparseness-transformed cochlear inputs were much better than
reconstructions from merely whitened inputs. This superiority was true
even though for thresholds up to approximately 1.3, mean firing rates were
lower for sparseness-transformed inputs than for merely whitened inputs.

Moreover, for a given threshold, reconstruction errors tended to be larger
for the BOS played back in reverse (REV) than for BOS or CON, illus-
trating that reconstructions were optimized for stimulus ensembles experi-
enced during training but not for novel ensembles. In the Methods we show
that the reconstruction error is approximately equal to a term that grows
not only with the number of subthreshold events, but also with their vari-
ance; hence, stimuli that induce narrow subthreshold distributions (such
as the BOS, Figure 5.7) lead to smaller reconstruction errors.

Fig. 5.10 (facing page): Reconstructing the cochlear spectrograms from firing
rates. (A) Firing-rate of one example neuron in response to BOS for increasing
firing thresholds (θ = 0 to 12). The BOS spectrogram is shown on top. This
neuron is tuned to a feature present in introductory notes and responds to it up
to thresholds higher than seven. For each threshold, ten different responses are
plotted, corresponding to ten different instantiations of synaptic noise. k = 1.
(B) The reconstruction of a BOS spectrogram (orig., top) using all neurons,
based on a firing threshold of minus infinity (whi., 2nd from top) is fairly com-
plete with little information loss (arising from dimensionality reduction). With
increasing thresholds (below), more and more syllables are lost in the recon-
struction, but the reconstructed spectro-temporal patterns remain clearly rec-
ognizable. The arrow points to a down-sweep syllable. (C) Reconstructions of
REV (flipped horizontally for comparison with B) are worse than reconstruc-
tions of BOS at the same threshold; for example the down-sweep syllable is not
well reconstructed (arrow), presumably because zebra finches produce almost no
up-sweeps. (D) The fraction of active neurons (averaged over all BOS stimuli)
decreases with increasing threshold such that at θ = 3 about 1% of neurons are
active on average. This fraction decreases to 0.1% at about θ = 9. (E) The
reconstruction errors averaged over different stimulus ensembles are monotonic
functions of the firing threshold. For a given positive threshold, reconstruction
errors increase from BOS to CON to REV. N = 400.
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5.3.4. Selectivity and Sparseness

We explored the response selectivity of model neurons using the psy-
chophysical d′ measure (Green and Swets, 1966) that is routinely applied
in birdsong studies. According to this measure, the selectivity for a stim-
ulus over another is given by the difference in mean firing rates elicited by
these stimuli, normalized by their standard deviations (see section 2.1).
We assessed the selectivity of neurons to BOS versus matched spectro-
temporal stimuli such as CON and REV. Variability of responses to a
fixed stimulus was generated by a white-noise current source.

We found a wide range of selectivity behaviors. Many neurons responded
more strongly to CON than to BOS, but this CON preference often re-
versed to BOS preference at high firing thresholds, Figure 5.11B. For a
firing threshold of zero, the median d′ selectivity for the BOS was nega-
tive across the population, both with respect to REV and to CON, Figure
5.11B. Hence, at this low threshold, the majority of neurons preferred REV
and CON over BOS. BOS anti-preference remained true for a range of fir-
ing thresholds θ up to three. However, all of the median and mean BOS-
REV and BOS-CON selectivities became positive at thresholds θ ≥ 5,
Figure 5.11C. Thus, the response selectivity of the network was non triv-
ial in that it reversed at higher thresholds. From the point of view of
stimulus selectivity, the low-threshold regime of our network is a model of
densely firing field-L neurons and the high-threshold regime is a model of
sparsely firing HVC neurons.

Our training set contained many versions of two different CONs. For
BOS-CON selectivity reversal it did not matter whether selectivity was
tested on three novel CONS as in Figure 5.11, or on twelve novel CONs,
or on the two trained CONs, because for all these cases the median and
mean BOS selectivities reversed at around θ = 3 − 4. However, when
CONs from many more birds (> 20) were in the training set, then the
median BOS-CON selectivity became positive only at very high thresholds
(θ ≥ 8 for 22 CONs), whereas the mean selectivity became positive already
at θ ≥ 3. Thus, when responses to many different songs are sparsified,
then increasing numbers of neurons develop a feature preference that best
matches a CON in the training set rather than the BOS; however, this
match is not particularly good as illustrated by BOS that is preferred on
average already at relatively low thresholds.
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Fig. 5.11: d′ selectivity for BOS reverses at high firing thresholds. (A) Example
model neuron with reversing BOS-CON selectivity. This neuron’s STRF (inlay)
codes for an up-sweep from 500 to 800 Hz over 20 ms. The resulting BOS-
CON d′ selectivity is negative for low thresholds θ = 0, 1 and turns positive for
thresholds θ ≥ 2. (B) Example cumulative distributions of BOS-REV (blue) and
BOS-CON (red) d′ selectivities across N = 400 neurons for θ = 0 (solid lines)
and θ = 7 (dashed lines). For θ = 0 the selectivities are biased towards negative
values, whereas for θ = 7 the distributions are biased towards positive values.
(C) Bar plot summarizing BOS-REV (blue) and BOS-CON (red) selectivities
for a wide range of firing thresholds. The colored bars indicate the median d′

selectivity and the error bars delimit the first and third quartiles. Selectivity
reverses at around θ = 3 (REV) and θ = 5 (CON).

For any given threshold θ, the median d′ selectivity (be it positive or
negative) depends on the noise level. When increasing the noise level, the
median d′ selectivity goes toward zero, and, when decreasing the noise
level, the median d′ selectivity diverges from zero. d′ magnitudes are
also influenced by the number of different song renditions used to probe
selectivity. When selectivity is probed with a single BOS and a single
CON file and noise is small, d′ values can become arbitrarily large. Hence,
our model allows an arbitrary scaling of d′ values by manipulating the
intrinsic noise.
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We tested the dependence of BOS selectivity on the temporal summation
window and found that our results did not depend critically on STRF
width. Model STRFs were 50 ms wide. For 100-ms wide STRFs, BOS-
CON and BOS-REV selectivities reversed at around θ = 2−3; and, for 25-
ms wide STRFs, selectivity reversal was seen at around θ = 4. Hence, with
increasing temporal summation window, selectivity reversal was seen at
lower thresholds. Note that 25-ms STRFs are much shorter than estimated
integration times in BOS-selective neurons (Lewicki and Arthur, 1996; Sen
et al., 2001).

We also tested the effect of neuron number on d′ selectivity. Doubling that
number from N = 400 to N = 800, or reducing it to N = 200 or N = 100
preserved selectivity reversal in the range θ = 2−5, for all CON ensembles
tested and for both firing-rate models. Also, we found that the value of
the threshold θ during learning has little influence on selectivity reversal
after learning. For θ = 0, θ = 2, and θ = 5 during learning, selectivity
for BOS reversed to positive values at around θ = 3− 4 after learning. In
summary, selectivity reversal at high thresholds was very robust and did
not depend on model details.

We assessed whether our model neurons preferred CON over artificial stim-
uli, as has been reported in field L (Theunissen et al., 2004; Grace et al.,
2003). We found high median selectivity for CON versus tone pips, tone
stacks (ripples), and white noise (Figure 5.12). This CON preference was
true for all thresholds θ ≥ 0 examined. Solely tones (sparse colored noise)
were preferred over CON for thresholds up to θ = 1. For higher thresholds
θ ≥ 2, CON-tones selectivity reversed and CON was strongly preferred.
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Fig. 5.12: Selectivity for CON vs. different artificial stimuli. Depicted are
median selectivities ± quartiles. PIP=tone-pip stimuli, WN=white noise. N =
400.
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5.3.4.1. Selectivity Reversal in Different ICA Algorithms

The key element in our model seemed to be the positive tail of synaptic
currents. Because this tail has a non-Gaussian shape, our model can be
seen as part of a broader class of ICA algorithms that extract maximally
non-Gaussian components from data (Hyvärinen and Oja, 2000). To test
whether BOS preference at high thresholds arises also in other ICA algo-
rithms, we trained an identical network using the classical ICA algorithm
by Bell and Sejnowski (results not shown) (Bell and Sejnowski, 1995).
In this algorithm, as in most similar algorithms, the final distribution of
synaptic currents is symmetric, with heavy tails on both sides. For this
reason we applied the firing threshold to absolute synaptic currents. We
computed BOS selectivities for different firing thresholds θ and found that
BOS-CON and BOS-REV selectivities reversed as in our model, but at
higher thresholds: The median and mean BOS-REV selectivities reversed
at θ = 4, whereas the mean and median BOS-CON selectivities reversed at
around θ = 7. Thus, the emergence of BOS preference in the ultrasparse
regime of simple networks did not depend on how efficient coding was en-
forced, but appears to represent a generic consequence of non-Gaussian
statistics and the choice of the training set.

5.3.5. Multilayer Networks

To account for the layered architecture of the auditory pathway, we also
explored a two-layer network, in which the second layer was trained on
thresholded first-layer outputs. In simulations, first-layer outputs were
first summed over consecutive time bins (to extend receptive field widths
in the second layer) and were then subjected to whitening and sparseness
transformations (as we did for the first layer, see Figure 5.13). In sim-
ulated networks in which the first layer was a universal encoder (small
θ), we found that response selectivity in the second layer reversed at high
firing thresholds in preference of BOS. Hence, our high-threshold model of
response selectivity in HVC can also be expressed in an architecture that
is consistent with the feedforward organization of the auditory pathway.
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Fig. 5.13: Selectivity in two layers. Median and quartile selectivities in a
network of two layers for various firing thresholds θ in the first layer and θ2
in the second layer. In each simulation, second-layer responses were evaluated
using the first-layer threshold applied during training. As can be seen, BOS
preference in the second layer is restricted to the high-sparseness regime there
(right part of the three subplots). k = 1, N = N2 = 400.



Chapter 6

Nonsymmetric Sparse Coding as a
Computational Tool

Die schlechten ins Kröpfchen
Die guten ins Töpfchen

Gebrüder Grimm, Aschenputtel

In chapter 5 I showed how nonsymmetric sparse coding may be a valuable
approach to explain the computational dynamics in the auditory process-
ing of the zebra finch. We established that such an encoding scheme would
be desirable from a metabolic point of view. But as stressed in the intro-
duction sensory coding has to present the environment to the animal in a
fashion that the animal is able to perform adequate actions or take correct
decisions. I already mentioned the possibility of song learning based on
the sparse representation of tutor song and bird’s own song in section 5.2.
In this chapter I want to go step further and present four computational
tools for four problems where nonsymmetric sparse coding is the key el-
ement. While classical approaches to these problems are often heuristic
and involve mathematics difficult to predict, the methods we will discuss
are entirely data-driven and mostly linear. All results are elaborated for
birdsong but can easily be applied to more complex problems.
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6.1. Sparse Coding Used for Subsong Detection

The scientific interest in the zebra finch is mainly focused on the bird’s
ability to imitate vocalization of a tutor as mentioned in the introduction.
The main phase of song learning is the so called sensory-motor phase of
the juvenile bird. During this time the bird’s vocalization shifts gradually
from subsong (similar to human babbling) with no defined syllables, no
clear temporal or spectral structure, to plastic song where syllables are
present, but still lack the spectral smoothness and a static song. And
finally to the crystallized adult song, with very low variability (see section
1.2.1 for a detailed description of zebra finch song and it’s development).

Many experiments with zebra finches, be it lesion experiments, electro-
physiological experiments, or observational studies, rely on the analysis
of changes or on the development of the bird’s (sub-)song . When songs
are recorded over several days it is desirable to automate the recording
process. Computers do a good job in recording the songs of adult birds,
as they can easily be detected on-line based on heuristic features, such as
typical rhythm or spectral features. However, when dealing with subsong,
they will fail. Lacking any typical rhythmicity, no repeated syllables, and
a misty spectrum subsongs are not the preferred target of such detectors.
When these detectors are running at the same settings as for adult song,
most of the subsongs will be missed, and the ones recorded will be highly
biased. If the detection criterion is loosened in order to produce less false
negative detections, the recorder will start to detect all the calls as well
as a lot of (cage-)noise. In our lab we recorded for one bird up to 10’000
files per day and (i.e. a nearly continuous recording) of which only several
hundred contained subsongs. Sorting this amount of files by hand would
take roughly the same amount of time as their recording.

6.1.1. Training of the Detector

The method is completely data-driven and has to be trained off-line prior
to application. This training consists in two steps: in a first step we will
produce a set of linear filters using nonsymmetric sparse coding.

But first we will have to define the training set. If we just want to sort the
files of a day’s recording, it is best to use all the files of this day. If we want
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Fig. 6.1: Diagram of feature vector calculation. The spectrogram of a potential
subsong file, or a window containing a potential subsong (a) are convolved with
the set of filters, previously trained by our nonsymmetric sparse coding algorithm
(b). Of the output (c) only the maximum is taken and written into the feature
vector (d).

to have a general detector however, it would be best to randomly choose
recordings of different juveniles at different ages. It is important to be
aware, that such a data-driven detector will only be able to reliably work
on a stimulus space which it was trained on. Any stimulus perpendicular to
the training set will randomly be classified as subsong or not. The number
of dimensions n needed is highly dependent on the diversity of the stimuli.
Recordings from a single bird and day without complex background noise
might be completely represented by even less than 100 filters, while a
general detector might need more than 1’000 filters.

The main idea for the detector is the following: if we apply the filter on
a sound file we get a temporal response curve for each filter. From the
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Fig. 6.2: Distribution of features. (A) The histogram of features looks like a
unimodal log-normal distribution. (B) When plotting the log-feature histogram
we see that the distribution is actually bimodal, consisting in the sum of two
log-normal distribution. However, the two distributions are to close to attribute
single features to one or the other. N = 400.

output histogram (Figure 5.7) we know, that this output curve will mostly
be moving around zero, very much like low-pass filtered noise. But at very
few points in time, the response will deviate strongly from zero into the
positive range. My interpretation of such a curve is that most of the time
the sound is just noise in the subspace of the feature encoded by the filter.
But at the time of the peaks of the curve, the feature is present in the
sound. The amplitude of the peak gives a measure of how strong the
feature is. So ideally, if we just take the maximum of a curve, we should
either get a small value which is due to the noise, i.e. the feature is not
present in the file, or a big value due to at least one presence of the feature
(see a schematic drawing in Figure 6.1). If we look at the distribution of
the maxima we see, as predicted, a bimodal distribution. But especially
with subsong from young birds the distribution of the features that are
present is so broad that it is highly overlapping with the distribution of
the noise peaks (Figure 6.2). So we are not able to tell with high accuracy,
whether or not a single feature is present in a sound file. However, the
features are not independent, and the cumulative knowledge makes it easy
to separate subsong, as it has a typical feature vector.

After the unsupervised step using our nonsymmmetric sparse coding algo-
rithm, we will have to choose a random set of subsong files and noise files
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Fig. 6.3: Classification of 5534 files from a single day. The model was trained
on the recorded files of the day previous to the classification. (A) Distribution
of distance of the files to the hyperplane defined by the SVM classifier. The
distribution is clearly bimodal with one mode on each side of the hyperplane.
After fitting a Gaussian mixture with two Gaussians to the this distribution we
can classify the files with a certain probability to one or the other Gaussian.
The 4719 red colored files belong with a probability of 99% and above to the
non-subsong distribution, while the 638 green colored files belong to the sub-
song distribution with a probability of 99% and above. In blue 177 files have no
classification above 99%. Roughly one third of the files contain single syllables
which are mostly subsong-like long calls. These calls/syllables are hard to clas-
sify also for humans as there is a gradual transition. Half of the non-classified
files are subsong files classified with probabilities below, but mostly close to 99%.
The rest are noise and call files with classification probability below 99%. The
red distribution shows two peaks which is due to noise and call files both being
classified simply as non-subsong. Examples of classified files are given by (B)
noise, (C) calls, (D) long call, and (E) subsong. N = 400.

and tag them. For the presented data we choose a total of 50 samples (less
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than the number of dimensions), roughly 25 each. With the tags and the
feature vectors we trained a support vector machine (SVM) with a linear
kernel, such that the space of feature vectors was split into a subsong and
a non-subsong space. An example of the classification is given in Figure
6.3.

Alternatively this algorithm can also be used from real-time subsong de-
tection. Instead of using whole files we use sliding windows somewhere in
the range of the length of a subsong (0.2 - 1 s). For each window a feature
vector is calculated and then classified. The exact on- and offset of the
subsong can not be determined by this method, however it is simple to
estimate the onset of a sound by determining the onset of acoustic power.
For the training of such a classifier it has to be trained on such windows
completely with or without subsong.

6.2. Tracking Song Development

An open question is the tracking and quantification of how a bird learns
his song. Tchernichovski et al. (2001) defined a set of 4 heuristic features
that summarized songs: Wiener Entropy, spectral continuity, pitch, and
frequency modulation. In Deregnaucourt et al. (2005) they not only had a
look at the mean values, but also at the variances of these measures. They
thereby found that the variance of Wiener Entropy was raising during
training, but reset after sleep to a lower level than the previous evening.
These findings were reconfirmed later by Shank and Margoliash (2009).

However, the question arises whether there are more and possibliy non-
heuristic features that could describe song learning on a more detailed
level and at the same time reproduce the finding from Deregnaucourt
et al. (2005) and Shank and Margoliash (2009). As in the last section we
therefore trained filters using our nonsymmetric sparse coding algorithm.
We once trained them on the first day of training (day 39) and once on
the last day (day 102) and calculated feature vectors (see section 6.1) for
song files over the whole training phase.

In Figures 6.4C-H we present a number of representative features for the
day-102 training set. Filter C is coding for certain downsweeps. As we
see, the bird is optimizing his song over the whole period of training in
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Fig. 6.4: Tracking song development. (A) Magnification of the black box in
(B). (B) Example of a bird trained from day 39 to day 102. Each dot represents
the summed feature vector of one handclassified song file. The green dots are
gained by 200 filters trained on the recordings of day 102, red dots by 200 filters
trained on the recordings of day 39. A clear positive trend can be seen for both
features sets. However, for the red dots this trend ends around day 75. As one
can see from (A) the positive trend can also be seen on an intraday level and a
reset on the next morning. (C), (D), (E), (F), (G) and (H) are representative
examples of the development of single features (trained on day 102). On the
left the development is shown for the filters given on the right. Recordings were
provided by Georg Keller.

order to optimally drive this filter. Filter D in contrast is coding for a
frequency band somewhere around 6 kHz and is highly suppressed by a
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neighboring frequency band. The bird drives it mainly by his plastic song
around day 60, but will no longer in later stages of learning. Filter E
codes for a lower frequency band slightly above 1 kHz. As we see, this
filter is driven by subsong, but as soon as the bird sings plastic songs, it
will no longer be driven. However, there is a slight increase form day 90
on. Filter F is coding for the onset of a harmonic stack, preceded by some
high frequency sound. This filter is absolutely not used until day 80. But
from then on the bird changes his song continuously in order to drive this
filter. Filter G codes for the upper part of a harmonic stack. The filter is
not driven until day 68. Within 3 days the bird changes its song towards
this filter and leaves it for the rest of training. Filter H is coding for a
short sound in a medium frequency band. During subsong phase the bird
is optimizing for this filter, but during plastic song phase it gets slowly
neglected.

However, are we able to find the development reported in the above men-
tioned studies? The answer lies in the summed feature vectors. In Figure
6.4B the summed feature vector for the two filter sets are shown. Green
dots represent the sum for one song file filtered by the day-102 training
set, red dots by the day-39 training set. For both sets a clear raise of the
sum can be seen. However for the red dots it saturates somewhere around
day 70, while for the green dots it continues until the end of training. If we
zoom into single days (Figure 6.4A) we see a clear positive in-day trend:
values derived from evening song files have higher values than from morn-
ing song files. Additionally we can see a clear reset in the morning, values
are lower than on the previous evening. This is in absolute accordance
with Deregnaucourt et al. (2005) and Shank and Margoliash (2009) which
proves this method to be valuable alternative to heuristic methods.

For the green dots, trained on the data from day 102 this result might not
be overly surprising. We can assume, that the bird will have a path from
a something random/basic towards his final song which is represented by
the subspace spanned by it. Our method analysis this song and finds
the dimensions where the complete song can be represented by minimal
1-norm (see section 4.3), leading to many low values and very rarely very
high values. As we defined the features as maxima over time, we only take
those high values. As the filters are trained on the last day, these filters
are optimized for this day and will produce maximal features. Intuitively
we now also expect these files to be the ones that produce the maximal
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features, which in this case proves to be true.

However, if we have a look at the red dots this intuition fails. Even though
the corresponding filters were trained on the files from day 39, the feature
vector sum continues to raise until around day 70. What does this mean?
It means that the basic subspace of zebra finch song is already laid out
by innate calls and some randomly produced subsongs. To come back to
the findings of (Marler, 1997) and Feher et al. (2009) mentioned in section
1.2.1.1: it might be, that not a proto-song template is innate, but that
the song reflects much more the sensory optimum within the boundaries
of what the physics of a zebra finch allows to produce. Without a broad
auditory experience, previous to the crystallization of the song, the sensory
subspace might be not well refined or even degenerate. A song would then
be the optimum in such a subspace which would resemble a prematurely
crystallized song. The red dots saturating around day 70. If a bird did
not hear anything but himself, any further development of his song past
day 70 would not be an enhancement in his sensory space. The song
would therefore remain unchanged for the rest of his life, unless his sensory
subspace would be updated by further experience while the bird is still able
to learn.

6.3. Smart Noise Suppression by Selective Neuron

Exclusion

The following section is reproduced from the publication Blättler and Hahn-
loser (2011).

Some of the recorded songs from our colony were contaminated with elec-
trical noise elicited by an old CRT computer monitor. This noise went
unnoticed, as it was very low and only noticeable in syllable gaps. How-
ever, when such files were part of the training set of our algorithm we
found filters encoding this noise, as illustrated in Figure 6.5. When we
omit these five neurons for song reconstructions, we are able to effectively
suppress the monitor noise. To demonstrate the effectiveness of this smart
noise suppression, we iteratively estimated the sound waveform associated
with the reconstructed song (Griffin and Lim, 1984). The original and
the noise-suppressed waveforms are available in this pdf by clicking on the
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Fig. 6.5: Smart suppression of electrical noise affecting the recordings. (A)

The STRFs of five neurons that encoded monitor noise. (B) Original BOS
spectrogram. The noise is manifest as gray horizontal bands (black arrows)

during syllable gaps. (C) Reconstruction of the BOS (Equation 4.47) from
elicited responses in the network. The thresholds of all neurons were set to
θ = −∞, with exception of the five neurons in A in which the thresholds were
set to θ = +∞. The monitor noise has vanished in the reconstructions, without
affecting the birdsong signal. N = 160.

corresponding legend of Figure 6.5.

In this example we filtered out noise by adding knowledge about the exis-
tence and form of noise and the form of corresponding filter to the system.
However, one could also image an immanent system where certain filters
are ignored based on the statistics of their output, in this example based
on the regular sinusoidal output (see Figure 5.3C, neuron 106).

6.4. Underdetermined Blind Source Separation of

Zebra Finch Songs

Blind source separation (BSS, sometimes also for blind signal separation)
is a problem we often encounter in our everyday life. It is popularly known
as cocktail party problem (CPP), a term coined by Cherry (1953). The
objective of BSS is to isolate one signal source from an unknown mixture



1.4628565


1.4628565



108 Nonsymmetric Sparse Coding as a Computational Tool

0

10

20

30

40

50
dB

200 ms

4
 k

H
z

A B

C

D E

F G

Fig. 6.6: Underdetermined blind source separation. (A) Song spectrogram

of the bird who provided the majority of songs during training (BOS). (B)
Song spectrogram of a bird how provided few songs during training (CON). (C)

Spectrogram of the BOS and CON played simultaneously. (D) Filter most

selective for BOS. (E) Filter most selective for the CON . (F) Spectrogram

of the separated BOS. (G) Spectrogram of the separated CON. N = 400.

of several signals. Humans are know to be very efficient in performing
this task given a mixture of different voices (Cherry, 1953; Arons, 1992),
therefore CPP. Several different cues, both monaural and binaural, are
considered in order to extract a specific source (Bregman, 1994).

Several algorithms have been proposed to perform BSS in cases where
we have the same number of sources as mixtures, or less sources than
mixtures (overdetermined) (Bell and Sejnowski, 1995; Hyvärinen and Oja,
2000). However, in real life the number of sources highly outnumbers the
mixtures (two in case of our ears). These underdetermined cases pose a so
much harder problem. Few algorithms have been proposed to tackle them
(Araki et al., 2004; Schmidt et al., 2007).
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The downside of most of this algorithms is their iterative character, mak-
ing them computationally costly and inapt for real time application. Our
nonsymmetric sparse coding algorithm in contrast works purely feedfor-
ward once trained. It takes the stimuli and projects them onto a higher
dimensional space, in which the dimensions are more or less independent,
similar to ICA algorithms solving the overdetermined CPP. However, be-
cause mixtures in the 1-dimensional audio space will generally not be pro-
jected onto this higher dimensional space to be linearly separable, we are
prone to nonlinearities. So here I reuse the old assumption: features are
either present or not (see Figures 5.7 and 6.2B), anything below a certain
threshold is likely random noise. Then the only remaining question is to
which source should a certain feature be attributed to. A possible solution
to this problem is the selectivity (see section 2.1), but one could imagine
different criteria for feature allocation.

We then get the following algorithm:

1. Calculate filters on sound files of the different sources.

2. Decide for a threshold θ.

3. Calculate the selectivity of each filter for each source vs. the other
sources.

4. Assign filters with a high selectivity to the sources.

5. Apply the filters assigned to one source on mixtures, threshold the
output, and invert everything back to audio domain.

An example of such an underdetermined BSS is given in Figure 6.6. The
simulation was one used for sensory modeling (see chapter 5), so the train-
ing set was dominated by songs of one bird (BOS) while two other birds
provided the remaining songs (CON). The selectivity d′i of the BOS vs.
CON for one bird was determined for each filter at a threshold θ = 2.
Filters with a selectivity d′i > 0.5 where labeled as BOS-filters and the
ones with selectivity d′i < −0.5 as CON-filters

SB =
{
i|d′i > 0.5

}
(6.1)

SC =
{
i|d′i < −0.5

}
. (6.2)
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Examples of BOS- and CON-filters are given in Figures 6.6D+E. One BOS
(Figure 6.6A) and one CON (Figure 6.6B) were mixed in the auditory
domain and then the spectrogram of the mixture was calculated (Figure
6.6C). I calculated the suprathreshold synaptic current Y+ (equation 4.15)
and inverted them back to spectrogram domain using only the labeled
filters (see equation 4.45):

Xt
rec BOS = P−1

∑
i∈SB

Ji
(
yti,+ + yti,E−

)
(6.3)

and equally for CON. The results can be seen for BOS in Figure 6.6F and
for CON in Figure 6.6G. For both songs the algorithm was able to retrieve
the correct temporal and spectral patterns. Slight distortion can be found
in the power amplitude. Interestingly, when listening to the reconstructed
waveforms (Griffin and Lim, 1984) the distortions seem to be less for the
CON than for the BOS. However, it is only by perception, not by numbers.

The fact that such an algorithm is able to perform the task might
be surprising. The mixture has been performed in sound domain.
Statistically, the mixture ads up linearly in the power-spectrogram

E
(
|F (ω) (x+ y)|2

)
= |F (ω) (x)|2 + |F (ω) (y)|2, but for sure not in log-

power-spectrogram. But our algorithm is splitting up the spectrogram,
except for the thresholding, purely linearly. The reason for still being able
to separate the two signal lies therein that the filters by themselves build
up a model of the songs. The non-linear addition of the two signals and
the linear decomposition lead to noise in the encoding, which is statisti-
cally distributed over all filter outputs. By thresholding most of the filter
outputs are suppressed and only the noise on the suprathreshold outputs
goes into the reconstruction. And that the suprathreshold output pro-
duces good reconstructions for the data lying in the training subspace has
been shown in Figure 5.10.

The question that remains is whether the selectivity is a good way to split
up the signals. For sure it is not optimal. When looking at the filters
(examples are given in Figure 5.2), it is obvious that certain filters such as
the onset filters are roughly equally activated by both, BOS and CON, as
both stimuli have clear onsets of sound power (as do most natural sounds).
These filters have a selectivity close to zero and are not used for any
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reconstructions. Optimally, they would be used for both reconstructions,
each at its time, depending on which filters are coactivated with certain
latencies.

The here presented algorithm for underdetermined BSS is not perfect, nor
is it intended to be perfect. The goal was to give a prove of principles.
Even in this highly simple version, the algorithm was able to separate the
songs. It is not absolutely ’blind’, as it has been trained on unmixed signals
and, when applied, it knew which sources were present in the mixture. A
completely blind algorithm would need to be trained on unlabeled and
probably mixed data and would need to identify the sources present in the
mixture himself1. Further research in this field of UBSS is needed in order
to develop working algorithms being close to blind.

The algorithm is most similar to Asari et al. (2006), even though they
present a slightly different problem including the head related transfer
function. The big difference is that even after training their method re-
quires an iterative optimization making it computationally costly and un-
suited for real-time applications.

1 A possibility for identification of sources may be an extension of the algorithm
presented in section 6.1
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Chapter 7

Discussion

The moment we want to believe something, we suddenly
see all the arguments for it, and become blind to the
arguments against it.

George Bernard Shaw

The following chapter is partly reproduced from the publication Blättler
and Hahnloser (2011).

By today brain research has mainly been a descriptive science, as any
science when it was young. However, at the current stage brain research
has grown to breed hypotheses and models as well as therefrom derived
principles and theories. The many hypotheses that are proposed and will
be proposed, they all have to stand the test of time and data.

7.1. A New Model?

The above presented model offers an understanding of auditory response
based on an efficient coding hypothesis. The model falls into the broad cat-
egory of ICA and sparse coding algorithms which try to linearly transform
given (sensory) inputs into independent outputs (e.g., synaptic currents).
In most ICA algorithms, independence of outputs is enforced by a sym-
metric cost such as kurtosis or entropy (Hyvarinen and Oja, 1997; Bell and
Sejnowski, 1995; Hyvarinen, 1999). Because of this symmetry, most ICA
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algorithms fail to account for the asymmetry imposed by the spike thresh-
old. By contrast, the nonsymmetric sparse coding algorithm explicitly
includes a rectification nonlinearity which truncates as little information
as possible because we minimize an approximate error of reconstructed
spectrograms. Among the ICA algorithms that produce asymmetrically
distributed outputs with a heavy tail, it is most closely related to non-
negative ICA (Plumbley, 2003), although in applications non-negative ICA
suffers from the problem that positive synaptic currents are completely
unconstrained. A non-negative sparse-coding (NNSC) algorithm with a
similar cost function has been described (Hoyer, 2002), but imposes some
tighter restrictions on the mixing matrix J (the inverse of W ) and has
the undesirable property that outputs yti cannot be computed in a single
forward pass but require an iterative optimization procedure. Last but
not least, our algorithm is different from nonnegative matrix factorization
(NMF) (Lee and Seung, 1999), because NMF does not allow for STRFs
with inhibitory subfields.

7.1.1. Song Selective Neurons in the Auditory Forebrain

In the model, the prominence of BOS in the training set and the shape
of our cost function conjunctively forced neurons to display minimal
suprathreshold synaptic currents to BOS (on average). These minimal re-
sponses explain why neurons preferred CON over BOS at moderately low
firing thresholds, very much like Field-L neurons do. At higher thresh-
olds, neurons responded to specific BOS features more than to other fea-
tures. In the high-threshold regime, model neurons were BOS selective,
and during BOS presentation they fired sparsely and were hyperpolar-
ized on average, all very much like HVC mirror neurons that project to
Area X (HVCX neurons): HVCX neurons are hyperpolarized by playback
of the BOS and produce a high frequency burst in response to a very
specific song feature (Mooney, 2000; Prather et al., 2008). However, at
high thresholds, our model network did no longer function as a universal
encoder of the auditory environment. Although BOS reconstructions wors-
ened very gracefully with increasing threshold, the neural representation
of non-preferred stimuli degraded rapidly.1 This observation recommends
the high-threshold regime only for specialized auditory areas such as HVC

1 see Figure 5.10
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and the low-threshold regime for lower auditory areas such as Field L that
respond to a large variety of sounds.

Can selectivity for the TUT also be seen as a corollary of an efficient coding
hypothesis? HVC neurons in juveniles tend to prefer TUT over most other
stimuli including the BOS (Nick and Konishi, 2005), whereas in adults this
selectivity reverses such that HVC neurons tend to prefer BOS over TUT
(Margoliash, 1986; Nick and Konishi, 2005). Taken together, these data
could be reproduced by our high-threshold model of HVC if TUT originally
were the more prominent stimulus than BOS, but then BOS takes over as
the most prominent stimulus.

The model may explain response properties in many higher auditory brain
areas of songbirds including CM: medial CM responses are shaped by au-
ditory memories and cells typically respond more to familiar than to unfa-
miliar songs Gentner and Margoliash (2003), in analogy to BOS preference
seen in HVC. Interestingly, selective CM cells have lower spontaneous fir-
ing rates than non-selective cells, in agreement with the high-threshold
regime of our model.

To ensure the dominance of BOS in the model it is the most frequent
stimulus in the training set. One could argue that a zebra finch does
not hear BOS more often than CON of another bird in the same cage.
However, the frequency is just the most simple way to ensure dominance.
It could also be induced by attentional factors, i.e. a weighting in cost
function depending on the attentional state of the bird (singing, listening,
passive, sleeping, ...).

7.1.2. STRFs and Their Relation to Spike Responses

Greene et al. (2009) applied a popular sparse coding algorithm to compute
optimal linear kernels on large numbers of birdsong spectrograms. They
evaluated model output in terms of receptive field shapes and found that
a stronger sparseness prior during training led to stronger resemblance of
model STRFs with STRFs in Field L.2 The STRFs in the similar model
presented in this thesis also qualitatively resembled STRFs in Field L.

2 For HVC projection neurons no STRFs have ever been estimated, for reasons
explained above.
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Without density prior, model STRFs were denser in spectral and tem-
poral modulations than Field L STRFs. However, I showed there is no
principled discrepancy because by using a suitable density prior, we were
able to modulate the STRF density almost arbitrarily (Figure 5.2B), im-
plying that the model is amenable to fitting a large variety of experimental
STRFs. Most importantly, this work suggests that neural firing may con-
stitute a better model read out than receptive fields, because neural firing
takes nonlinearities into account (such as the firing threshold), whereas
receptive fields are linear and often poor descriptions of spike data. For
example, I found that as a function of the firing threshold, the model,
despite its fixed underlying STRFs, was able to reproduce qualitatively
different responses as seen in Field L and HVC. Hence, a simple STRF
may be far from ideal as a characterization of neural firing, because it may
be associated with a diverse range of response behaviors.

7.1.3. Function of Selectivity Reversal

The model can reproduce the selectivity reversal seen in HVCX neurons
Mooney (2000). Based on the model I predict this to be a widespread
phenomenon. I predict that sparsely firing neurons, when they are depo-
larized by constant current injections to fire densely, will display reduced
or negative selectivity for their normally preferred stimulus. Similarly, I
predict that densely firing neurons should lose or also reverse their se-
lectivity while being hyperpolarized by constant current injection. These
predictions apply to the mean and median selectivities in a large popula-
tion (not to each individual cell) and should be relatively simple to verify
using intracellular recordings. Note that these two predictions are surpris-
ing for neurons with monotonic frequency-current (F-I) curves f as in our
model. I can speculate about the function of such selectivity reversal, if
indeed widespread. If it were to be found in other animals and brain areas
and were under volitional control, it could be used to attentionally screen
the sensory environment for highly familiar stimuli (high threshold case),
or to tune in on all kinds of stimuli with preference for unfamiliar ones
(low threshold case).

Regarding shifts in excitatory/inhibitory balance, the model predicts that
the effect on response selectivity depends on how balance shifts affect
firing rates. For example, if increased inhibition leads to decreased firing
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rates, the model predicts increased response selectivity (for the BOS or an
equivalent stimulus). In general, manipulations of excitation or inhibition
within a network can lead to highly non-trivial reactions, e.g. disruption
of local inhibition onto a cell can lead to lower baseline firing rate and to
significant changes in firing patterns. For example, in Rosen and Mooney
(2003), decreased G-protein coupled inhibition led to decreased baseline
firing, which is counterintuitive and may be caused by nonlinear priming
effects. The model is not able to explain such behavior, as it would need
to include a more complex neuronal model including synaptic feedback.
Nevertheless, because our theory applies in the direction of firing rate
changes, the model predicts increased selectivity for the BOS when removal
of inhibition decreases firing rates, which is what has been observed Rosen
and Mooney (2003).

7.1.4. Applicability to Other Sensory Modalities

The findings may have relevance for the encoding of sensory modalities
other than audition, including olfaction. In mammals, strong odorant-
selective responses arise immediately downstream of primary sensory in-
puts (Davison and Katz, 2007). Though the neural mechanisms of this
selectivity remain to be studied, in insects the mechanisms giving rise to
sparse odor representations have been well characterized. The sparse odor
representation in Kenyon cells arises from synchronized excitatory inputs
mediated by densely firing projection neurons in the antennal lobe and
by nonspecific inhibitory inputs from lateral horn interneurons that in
essence set a high firing threshold to Kenyon cells (Laurent, 2002; Perez-
Orive et al., 2002). The Kenyon cell’s supralinear summation of EPSPs
(Perez-Orive et al., 2004) represents a simple biophysical mechanism for
achieving a long tail in the distribution of positive synaptic currents, a key
element of our model. And, the control of firing threshold in Kenyon cells
by global inhibitory input is well suited to endow these cells in principle
with the ability to change response selectivity, for example if required by
external circumstances.
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7.1.5. HVC and Song Learning

As a model of HVC responses, the findings suggests that vocal-auditory
mirrored activity in HVC has a sensory origin (activity in HVCX neurons
is mirrored in that auditory-evoked and singing-related responses in these
cells are nearly identical (Prather et al., 2008)). In particular, my interpre-
tation is that initially, HVC responses are shaped by the TUT; thereafter,
HVC responses and their selectivity are further shaped by auditory feed-
back elicited by the BOS (Nick and Konishi, 2005), which during early
sensorimotor song development is generated by a motor pathway that ex-
cludes HVC (Aronov et al., 2008). During this developmental phase, a
network forms among HVC neurons and ultimately produces adult song.
A sensory origin of the HVC network would imply that motor responses
in HVC neurons learn to mirror sensory responses, not vice versa (HVC
neurons learn to use auditory-feedback-elicited responses as future motor
outputs, rather than their learning to map auditory feedback onto the
HVC neurons that were involved in generating the feedback). In other
words, when mirror neurons fire during motor behavior, they do so mainly
because they have developed selectivity to the stimulus preceding their fir-
ing. More specifically, mirrored activity in HVC neurons could derive from
essentially one assumption: that the local HVC network tries to maximize
the drive of cells at the moments at which these fire, initially driven by
sensory input. Accordingly, HVC synapses would allow for cells to drive
each other at time lags at which their preferred TUT/BOS auditory fea-
tures occur. Such specific function could arise for example by virtue of
some spike-time dependent synaptic plasticity mechanisms (Bi and Poo,
1998; Jun and Jin, 2007; Fiete et al., 2010; D’Souza et al., 2010).

In conclusion, the architecture we have described shows that efficient cod-
ing constraints can explain the diversity of response specificity in higher
sensory areas. Sparse/selective and dense/antiselective responses are at
opposite extremes of the same efficient coding principle. It is possible that
this link between response specificity and firing sparseness holds true also
in other neural systems such as the neocortex. And, by extrapolation, our
work shows that efficient coding constraints may guide the formation of
sensory pathways all the way up to premotor areas, by which our work
can shorten the gap between our understanding of pure sensory and pure
motor codes.



7.1 A New Model? 119

7.1.6. The Algorithm from an Engineering Viewpoint

The algorithm offers a powerful method for bioacoustic signal analysis.
The diversity of STRFs in the model is well matched with the behavioral
richness of birdsong. Stereotyped syllables can be readily detected because
they are represented essentially by a single STRF, whereas more variable
syllables such as harmonic stacks may be associated with multiple STRFs
as in Figure 5.4. Hence, the number of STRFs allocated to a particular
syllable or sub-syllable may reflect its variability. The level of song analysis
(detailed vs coarse) can be controlled by the number of neurons in the
network. One can imagine uses of the algorithm for detecting particular
song variants (such as high-pitched versions of harmonic stacks), or for
identifying similar notes within different syllables, etc.

From an engineering perspective, one computational benefit of the sparse-
ness transformation in the model is smart noise reduction. Using a high
firing threshold during reconstruction, sounds to which cells have not been
exposed during training can be effectively filtered out. More interestingly,
by omitting certain neurons during reconstruction (e.g., by setting their
firing thresholds to infinity), undesirable signals encountered in the train-
ing set can be conveniently suppressed. For example, by excluding the
five neurons that encoded high-frequency noise (e.g. Neuron 106 in Fig-
ure 5.3) BOS could be efficiently cleaned from that noise. Of course the
brain may make use of such smart noise reduction without ever explicitly
having to reconstruct the original input; for example, feature-based atten-
tional inputs may selectively suppress the firing in some neurons to con-
strain downstream processing to only relevant sensory features. Although
such selective suppression has not been found yet in songbirds, birds may
possess attentional selection mechanisms because they can detect subtle
acoustic features and adapt their songs when negatively reinforced (Tumer
and Brainard, 2007).

An additional application of the algorithm is the qualitative analysis of
the development of behavioral data over time. If development is dedicated
towards the deployment of distinct features or patterns the algorithm is
able to identify such features long before their perfection. Such feature
development may be mainly unsupervised and guided e.g. by aesthetics,
such as in the bird song or in children’s drawings, but also supervised
or reward-driven, such as in hunting strategies. The algorithm allows to
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detect the emergence, the development, and the disuse of features.

Finally the algorithm could be used to recognize and separate known stim-
uli. Similar to noise suppression one can make use of the algorithm build-
ing models of the stimuli. The problem lies only therein to determine
which of the features belongs to which stimulus or to which group of stim-
uli. Once these belongings are determined recognition and separation can
be done very fast in a single forward pass with no need for iterative real-
time optimization, in contrast to algorithms such as NMF (Lee and Seung,
1999), or the NNSC algorithm proposed by Hoyer (2002).

7.2. Conclusion

In this thesis I presented a short summary of the songbird’s auditory
system and explained a set of measures to statistically asses neural activity
in such systems. I introduced a new non-negative sparse coding algorithm,
applied it to model computation performed in the songbird’s auditory
cortex and compared the characteristics of the model to data from songbird
studies. In a last part I indicated a set of possible application of the
algorithm as a computational tool.

The model above is not a singular one as others have been presented
before for the songbird’s auditory system (Greene et al., 2009) or sensory
modalities in a variety of animals (Bossomaier and Snyder, 1986; Hancock
et al., 1992; Bell and Sejnowski, 1997; Olshausen and Field, 1996, 1997;
Hyvarinen and Hoyer, 2001; Smith and Lewicki, 2006). However the model
makes a prediction regarding selectivity reversal which to my knowledge
has not been predicted by any other model yet. The beauty of the model
further lies in its generality - it explains behavior in cortical areas with
different functions and functionalities - and in its simplicity - only the firing
threshold θ has to be varied to produce the different encodings found in
the different cortical areas.

The engineering applications presented are no sophisticated tools but
should rather serve as inspiration and open the window to a vast field
of tasks that this algorithm and sparse coding in general might help to
tackle.
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List of Variables and Functions

Rule of thumb: Capital letter variables are matrices or vectors, minor
letter variables are scalars or single elements of matrices or vectors. Func-
tions are followed by arguments in parentheses. Actually, there are a few
exceptions.

Variable Description Type

I unity matrix matrix

1 vector of ones vector

∆ chirp factor scalar

∆t temporal spacing of the spectrogram scalar

∆W update of W matrix

δf spectral resolution scalar

δt temporal resolution scalar

η (Gaussian white) noise scalar

ηt (Gaussian white) noise vector

ηti noise on the synaptic current of
neuron i at time t

scalar

Γ weight for Tichonov-regularization matrix

Λ, E eigenvalue and eigenvector matrices
of the stimulus autocorrelation
matrix

matrix
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Variable Description Type

µ weight for Tichonov-regularization scalar

Σ(.),Σ(.|.) covariance matrix, conditional
covariance matrix

matrix

σ(.) signum function scalar function

σ2
. variance of scalar

σ
t|u
i

2
variance of the i-th signal estimation
at time t give the response Rt+u

scalar

τn step size in the optimization
algorithm

scalar

τ temporal size of the receptive fields scalar

θ firing threshold scalar

ξ total transformation matrix

ξ−1 pseudoinverse of ξ, given by
ξ−1 = E · Λ1/2 ·W−1

matrix

ξi total transformation onto neuron i,
STRF

vector

ξi(., .) transformation function onto neuron
i

scalar function

ξui transformation onto neuron i with
time delay of u

vector

(ξ−1)ui inverse transformation to signal i
with delay u

vector

A mixing matrix matrix

An gradient (to B) of the cost function
F (.) at the n-th optimization step

matrix

Bn parametrization of the sparseness
transformation matrix W at the
n-th optimization step

matrix

bmn, amn mn-th element of the matrix B, A scalar

C covariance matrix matrix

c trade-off between sparseness and
reconstruction error

scalar
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Variable Description Type

cs weighting factor of RF density scalar

CSR crosscovariance between stimulus
and response

matrix

CSS stimulus covariance matrix

covar(., .) covariance scalar function

d′ selectivity scalar

diag(.) diagonal of a matrix vector

E(.) expected value same type as argument

E(.|.) conditional expected value same type as first
argument

F (.) cost function to be minimized scalar function

F (ω) (f) Fourier transform of function f at
frequency ω

scalar function

f(.) elementwise cost function scalar function

f(.) time dependent frequency of a
chirplet

scalar function

fc center frequency of a chirplet scalar

fn center frequency of the n-th
frequency band

scalar

g(.) elementwise nonlinear function same type as argument

h receptive field matrix

J left inverse of sparseness
transformation W

matrix

K vector of constant offset vector

k extent of smoothing function U(.) scalar

Mn normalization scalar

N number of neurons scalar

N0 dimensionality of the cochlear input scalar

N2 number of neurons in the second
layer

scalar

na fraction of time a source is active,
i.e. nonzero

scalar
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Variable Description Type

P PCA transformation matrix

p(.) prior probability scalar function

p(.|.) conditional probability scalar function

R firing rates matrix

R(.) sparseness enforcing function scalar function

Rt firing rates at time t vector

RSA response strength of stimulus A scalar

r̃t predicted response at time t scalar

rti firing rates of neuron i at time t scalar

r̄A mean firing rate in response to
stimulus A

scalar

S (unknown) causes of stimulus X matrix

s number of frequency bands per
octave

scalar

s excerpt of sound for frequency
analysis

vector

SA set of filters encoding a stimulus A set

sb batch size scalar

U(.) elementwise smoothing function same type as argument

V (.) derivative of smoothing function
U(.)

same type as argument

W sparseness transformation matrix

W unmixing matrix matrix

W (.) chirplet transformation matrix matrix

w windowing function scalar function

X log-power spectrogram of a stimulus
/ matrix of any stimuli

matrix

XP PCA-transformed stimuli matrix

x(., .) spectrogram function scalar function

Xt:u spectrogram from time t until time u vector

Xt spectrogram at time t / single
stimulus

vector
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Variable Description Type

X̂t
p reconstruction of the

PCA-transform Xt
p

vector

Xt
rec reconstruction of the spectrogram

Xt−τ :t from X̂t
p

vector

xti spectrogram amplitude at time t
and frequency i

scalar

Xt
p PCA-transform of the spectrogram

Xt−τ :t / PCA-transformed stimulus
vector

Y synaptic currents matrix

y0 subthreshold minimum scalar

Y t synaptic currents at time t vector

Y t
E− estimation of subthreshold synaptic

currents at time t, zero, where
yti ≥ θ

vector

Y t
+ suprathreshold synaptic currents at

time t, zero, where yti < θ
vector

yti synaptic current of neuron i at time
t

scalar

zA z-score of stimulus A scalar

(.)uuii entry in the (correlation) matrix for
signal i at time u on the diagonal

scalar

.T transpose of matrix function
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Appendix B

List of Abbreviations

Abbrevia-
tion

Full Name

Av Nucleus Avalanche

BOLD Blood oxygenation level-dependent

BOS Bird’s own song

BSS Blind Source (or Signal) Separation

CF Characteristic frequency: stimulus frequency to which a
neuron responds best

CLM Caudal lateral mesopallium

CM Caudal mesopallium

CMM Caudal medial mesopallium

CON Conspecific song: Song by another bird of the same species

CPP Cocktail party problem

DLM Medial nucleus of the dorsolateral thalamus

eMTF Ensemble modulation transfere function

fMRI Functional magnetic resonance imaging

FT Fourier transform

HVC Letter-based proper name

HVC shelf Shelf of HVC

ICA Independent component analysis

ILD Interaural level difference
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Abbrevia-
tion

Full Name

ITD Interaural time difference

L Field L

L* Subfield L* (where * is 1, 2a, 2b, or 3)

LL Lateral lemniscal nuclei

LMAN Lateral magnocellular nucleus of the anterior nidopallium

MID Maximally informative dimensions

MLd Nucleus mesencephalicus lateralis pars dorsalis

MMAN Medial magnocellular nucleus of the anterior nidopallium

MTF Modulation transfer function

NA Nucleus angularis

NCM Caudal medial nidopallium

NIf Interfacial nucleus of the nidopallium

NL Nucleus laminaris

NM Nucleus magnocellularis

NMF Nonnegative matrix factorization

NNSC Nonnegative sparse coding

Ov Nucleus ovoidalis

Ov core Core of nucleus ovoidalis

Ov shell Shell of nucleus ovoidalis

Ovm Nucleus ovoidalis medialis

ParaHVC Letter-based proper name

PCA Principle component analysis

RA Robust nucleus of the archopallium

RA cup Cup of the robust nucleus of the archopallium

REV Bird’s own song play in reverse

RLC-circuit Proper name

RF Receptive Field

SO Superior olive

STFT Short-time Fourier transfrom

STRF Spectral temporal receptive fields (sometimes called
spectro-temporal)
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Abbrevia-
tion

Full Name

SVM Support vector machine

UVA Nucleus uvaeformis

VP Ventral pallidum

VTA Ventral tegmental area
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organization and functional characterization of the auditory thalamus
in a songbird, the european starling. Journal of Comparative Physiology
A, 161:255–265.

Blakers, M., Davies, S., and Reilly, P. (1984). The Atlas of Australian
Birds. Melbourne University Press, Melbourne.

Blättler, F. and Hahnloser, R. H. R. (2011). An efficient coding hy-
pothesis links sparsity and selectivity of neural responses. PLoS ONE,
6(10):e25506.

Blättler, F., Kollmorgen, S., Herbst, J., and Hahnloser, R. (2011). Hidden
markov models in the neurosciences. In Dymarski, P., editor, Hidden
Markov Models, Theory and Applications, pages 169–186. InTech.



134 BIBLIOGRAPHY
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